相關習題
 0  228600  228608  228614  228618  228624  228626  228630  228636  228638  228644  228650  228654  228656  228660  228666  228668  228674  228678  228680  228684  228686  228690  228692  228694  228695  228696  228698  228699  228700  228702  228704  228708  228710  228714  228716  228720  228726  228728  228734  228738  228740  228744  228750  228756  228758  228764  228768  228770  228776  228780  228786  228794  266669 

科目: 來源: 題型:填空題

8.雙曲線$\frac{x^2}{{64-{m^2}}}$-$\frac{y^2}{m^2}$=1(0<m<5)的焦距為16.

查看答案和解析>>

科目: 來源: 題型:選擇題

7.已知f(x)=$\frac{xlnx+ax}{e^x}$(e是自然對數(shù)的底數(shù),a是大于1的常數(shù)),設m>1,則下列正確的是(  )
A.$\frac{4mf(m+1)}{m+1}$>2$\sqrt{m}$f(2$\sqrt{m}$)>(m+1)f($\frac{4m}{m+1}$)B.$\frac{4mf(m+1)}{m+1}$<2$\sqrt{m}$f(2$\sqrt{m}$)<(m+1)f($\frac{4m}{m+1}$)
C.2$\sqrt{m}$f(2$\sqrt{m}$)>$\frac{4mf(m+1)}{m+1}$>(m+1)f($\frac{4m}{m+1}$)D.2$\sqrt{m}$f(2$\sqrt{m}$)<$\frac{4mf(m+1)}{m+1}$<(m+1)f($\frac{4m}{m+1}$)

查看答案和解析>>

科目: 來源: 題型:選擇題

6.設函數(shù)f(x)是定義在區(qū)間(-∞,0)上的可導函數(shù),其導函數(shù)為f′(x),且滿足xf′(x)+f(x)<x,則不等式(x+2016)f(x+2016)+2f(-2)>0的解集為( 。
A.(x|-2014<x<0}B.(x|x<-2018}C.(x|x>-2016}D.(x|-2016<x<-2014}

查看答案和解析>>

科目: 來源: 題型:填空題

5.已知函數(shù)f(x)=$\frac{1}{3}{x^3}$-$\frac{2}{x^2}$+x+d在R上單調,則b的取值范圍為[-2,2].(用區(qū)間表示)

查看答案和解析>>

科目: 來源: 題型:選擇題

4.已知定義在R上的奇函數(shù),當x>0時,f(x)=alnx+$\frac{1}{ax}$(a>0),且函數(shù)f(x)在x=1處的切線斜率為$\frac{3}{2}$,則方程f(x)=0的實數(shù)根的個數(shù)為( 。
A.0B.2C.4D.5

查看答案和解析>>

科目: 來源: 題型:選擇題

3.若f(x)是定義在R上的單調遞減函數(shù),且$\frac{f(x)}{f′(x)}$+x<1,則下列結論正確的是(  )
A.f(x)<0B.當且僅當x<1時,f(x)<0
C.f(x)>0D.當且僅當x≥1時,f(x)>0

查看答案和解析>>

科目: 來源: 題型:填空題

2.若函數(shù)f(x)是周期為4的奇函數(shù),且在[0,2]上的解析式為f(x)=$\left\{\begin{array}{l}{x(1-x),0≤x≤1}\\{sinπx,1<x≤2}\end{array}\right.$,則$f(f({\frac{41}{6}}))$=$\frac{1}{4}$.

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知α、β∈(0,π),且tanα、tanβ是方程x2-5x+6=0的兩根.
①求α+β的值.
②求cos(α-β)的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知A,B是圓C:x2+y2=1上兩點,且$\overrightarrow{OA}•\overrightarrow{OB}$=-1,點P是直線x-y-2=0上一點,則$\overrightarrow{PA}•\overrightarrow{PB}$的最小值是( 。
A.3B.2C.1D.0

查看答案和解析>>

科目: 來源: 題型:選擇題

19.已知函數(shù)f(x)為定義在[0,1]上的單調遞減函數(shù),若f(x+2)≤f($\frac{1}{2}{x^2}$),則x的取值范圍是( 。
A.$[1-\sqrt{5},1+\sqrt{5}]$B.$[1-\sqrt{5},-1]$C.$[-2,1+\sqrt{5}]$D.$[-\sqrt{2},-1]$

查看答案和解析>>

同步練習冊答案