相關(guān)習(xí)題
 0  228715  228723  228729  228733  228739  228741  228745  228751  228753  228759  228765  228769  228771  228775  228781  228783  228789  228793  228795  228799  228801  228805  228807  228809  228810  228811  228813  228814  228815  228817  228819  228823  228825  228829  228831  228835  228841  228843  228849  228853  228855  228859  228865  228871  228873  228879  228883  228885  228891  228895  228901  228909  266669 

科目: 來源: 題型:填空題

15.已知P是拋物線y2=4x上一點(diǎn),F(xiàn)是該拋物線的焦點(diǎn),則以PF為直徑且過(0,2)的圓的標(biāo)準(zhǔn)方程為(x-2.5)2+(y-2)2=6.25.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.拋物線y2=8x的焦點(diǎn)為F,其準(zhǔn)線與x軸的交點(diǎn)為Q,過點(diǎn)F作直線與此拋物線交于A,B兩點(diǎn),若$\overrightarrow{FA}$•$\overrightarrow{QB}$=0,則|AF|-|BF|=(  )
A.8B.9C.10D.12

查看答案和解析>>

科目: 來源: 題型:解答題

13.在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρsin2θ-4cosθ=0,直線l過點(diǎn)M(0,4)且斜率為-2.
(1)求曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,寫出直線l的標(biāo)準(zhǔn)參數(shù)方程;
(2)若直線l與曲線C交于A,B兩點(diǎn),求|AB|的值.

查看答案和解析>>

科目: 來源: 題型:填空題

12.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若b(tanA+tanB)=$\sqrt{2}$ctanB,BC邊的中線長(zhǎng)為1,則a的最小值為2$\sqrt{2}$-2.

查看答案和解析>>

科目: 來源: 題型:填空題

11.等差數(shù)列中,已知a6=-18.3,d=0.6,則S6=-118.8.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知正項(xiàng)等差數(shù)列{an}滿足:Sn2=a13+a23+a33+…+an3,其中Sn是數(shù)列{an}的前n項(xiàng)和.
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}滿足:bn=$\frac{{2+{a_n}}}{{{2^{2+{a_n}}}{S_n}}}$,求數(shù)列{bn}的前n項(xiàng)的和Tn

查看答案和解析>>

科目: 來源: 題型:填空題

9.設(shè)集合P={1,2,…,6},A,B是P的兩個(gè)非空子集.則所有滿足A中的最大數(shù)小于B中的最小數(shù)的集合對(duì)(A,B)的個(gè)數(shù)為:129.

查看答案和解析>>

科目: 來源: 題型:填空題

8.已知$\left\{\begin{array}{l}5x+4y≤26\\ 2x+5y-13≤0\\ x∈N\\ y∈N\end{array}\right.$,則目標(biāo)函數(shù)z=20x+10y的最大值為100.

查看答案和解析>>

科目: 來源: 題型:解答題

7.如圖,四棱柱ABCD-A1B1C1D1中,底面ABCD和側(cè)面BCC1B1都是矩形,E是CD的中點(diǎn),D1E⊥CD.

(1)求證;D1E⊥底面ABCD;
(2)在所給方格紙中(方格紙中每個(gè)小正方形的邊長(zhǎng)為1),將四棱柱ABCD-A1B1C1D1的三視圖補(bǔ)充完整,并根據(jù)三視圖,求出三棱錐B-DD1E的體積.

查看答案和解析>>

科目: 來源: 題型:填空題

6.曲線C1:$\left\{\begin{array}{l}{x=2cosθ}\\{y=bsinθ}\end{array}\right.$(θ∈[0,2π],θ為參數(shù),b>0)與曲線C2:$\left\{\begin{array}{l}{x=-1+tcosφ}\\{y=2+tsinφ}\end{array}\right.$(t是參數(shù),φ∈[0,π])恒有公共點(diǎn),則b的取值范圍是{b|b≥$\frac{4\sqrt{3}}{3}$}.

查看答案和解析>>

同步練習(xí)冊(cè)答案