相關(guān)習(xí)題
 0  229093  229101  229107  229111  229117  229119  229123  229129  229131  229137  229143  229147  229149  229153  229159  229161  229167  229171  229173  229177  229179  229183  229185  229187  229188  229189  229191  229192  229193  229195  229197  229201  229203  229207  229209  229213  229219  229221  229227  229231  229233  229237  229243  229249  229251  229257  229261  229263  229269  229273  229279  229287  266669 

科目: 來(lái)源: 題型:填空題

19.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x-y+1≥0}\\{3x-y-3≤0}\\{x≥0,y≥0}\end{array}\right.$,則z=3x+2y的最大值為12.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

18.已知sin(α+$\frac{π}{5}$)=$\frac{\sqrt{3}}{3}$,則cos(2α+$\frac{2π}{5}$)=$\frac{1}{3}$.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

17.某市共有2500個(gè)行政村,根據(jù)經(jīng)濟(jì)的狀況分為貧困村1000個(gè),脫貧村900個(gè),小康村600個(gè),為了解各村的路況,采用分層抽樣的方法,若從本市中抽取100個(gè)村,則從貧困村和小康村抽取的樣本數(shù)分別為( 。
A.40、24B.40、36C.24、36D.24、40

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

16.若復(fù)數(shù)z滿足(1+i)•z=3-2i(i是虛數(shù)單位),則z等于(  )
A.$\frac{-1-5i}{2}$B.$\frac{1+5i}{2}$C.$\frac{1-5i}{2}$D.$\frac{-1+5i}{2}$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

15.已知集合A={x|lgx≤1},B={-2,5,8,11},則A∩B等于( 。
A.{-2,5,8}B.{5,8}C.{5,8,11}D.{-2,5,8,11}

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

14.設(shè)集合M={-1,0,1},集合An={(x1,x2,x3,…,xn)|xi∈M,i=1,2…,n},集合An中滿足條件“1≤|x1|+|x2|+…+|xn|≤m”的元素個(gè)數(shù)記為${S}_{m}^{n}$.
(1)求${S}_{2}^{2}$和${S}_{2}^{4}$的值;
(2)當(dāng)m<n時(shí),求證:${S}_{m}^{n}$<3n+2m+1-2n+1

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

13.(x2+$\frac{1}{x}$)8的展開(kāi)式中含x4項(xiàng)的系數(shù)為70.(用數(shù)字作答)

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

12.函數(shù)f(x)=sin(2x-$\frac{π}{6}$)的圖象( 。
A.關(guān)于直線x=$\frac{π}{12}$對(duì)稱B.關(guān)于直線x=$\frac{5π}{12}$對(duì)稱
C.關(guān)于點(diǎn)($\frac{π}{12}$,0)對(duì)稱D.關(guān)于點(diǎn)($\frac{5π}{12}$,0)對(duì)稱

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

11.一箱中放了8個(gè)形狀完全相同的小球,其中2個(gè)紅球,n(2≤n≤4)個(gè)黑球,其余的是白球,從中任意摸取2個(gè)小球,兩球顏色相同的概率是$\frac{1}{4}$.
(I)求n的值;
(Ⅱ)現(xiàn)從中不放回地任意摸取一個(gè)球,若摸到紅球或者黑球則結(jié)束摸球,用ξ表示摸球次數(shù),求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

10.已知$\overrightarrow m$=(cosωx,$\sqrt{3}$cos(ωx+π)),$\overrightarrow n$=(sinωx,cosωx),其中ω>0,f(x)=$\overrightarrow m$•$\overrightarrow n$,且f(x)相鄰兩條對(duì)稱軸之間的距離為$\frac{π}{2}$.
(I)若f(${\frac{α}{2}}$)=-$\frac{{\sqrt{3}}}{4}$,α∈(0,$\frac{π}{2}}$),求cosα的值;
(Ⅱ)將函數(shù)y=f(x)的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,然后向左平移$\frac{π}{6}$個(gè)單位,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案