相關(guān)習(xí)題
 0  229162  229170  229176  229180  229186  229188  229192  229198  229200  229206  229212  229216  229218  229222  229228  229230  229236  229240  229242  229246  229248  229252  229254  229256  229257  229258  229260  229261  229262  229264  229266  229270  229272  229276  229278  229282  229288  229290  229296  229300  229302  229306  229312  229318  229320  229326  229330  229332  229338  229342  229348  229356  266669 

科目: 來源: 題型:解答題

6.在正項數(shù)列{an}、{bn}中,a1=2,b1=4,且an,bn,an+1成等差數(shù)列,bn,an+1,bn+1成等比數(shù)列.
(1)證明:{${\sqrt{b_n}}$}成等差數(shù)列,并求出an,bn;
(2)設(shè)cn=$\frac{1}{{{b_n}-1}}$,求數(shù)列{cn}的前n和Sn

查看答案和解析>>

科目: 來源: 題型:填空題

5.函數(shù)y=sinx和y=cosx在x=$\frac{π}{4}$處的兩條切線與x軸圍成封閉區(qū)域D,點(x,y)∈D,則x+2y的最小值為$\frac{π}{4}$-1.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.點P(-$\frac{π}{6}$,1)是函數(shù)f(x)=sin(ωx+φ)+m(ω>0,|φ|<$\frac{π}{2}$)的圖象的一個對稱中心,且點P到該圖象的對稱軸的距離的最小值為$\frac{π}{4}$.
①f(x)的最小正周期是π;  
②f(x)的值域為[0,2];  
③f(x)的初相φ為$\frac{π}{3}$        
④f(x)在[$\frac{5π}{3}$,2π]上單調(diào)遞增.
以上說法正確的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:解答題

3.某學(xué)校為倡導(dǎo)全體學(xué)生為特困學(xué)生捐款,舉行“一元錢,一片心,誠信用水”活動,學(xué)生在購水處每領(lǐng)取一瓶礦泉水,便自覺向捐款箱中至少投入一元錢.現(xiàn)統(tǒng)計了連續(xù)5天的售出和收益情況,如表:
售出水量x(單位:箱)76656
收益y(單位:元)165142148125150
(Ⅰ) 若某天售出8箱水,求預(yù)計收益是多少元?
(Ⅱ) 期中考試以后,學(xué)校決定將誠信用水的收益,以獎學(xué)金的形式獎勵給品學(xué)兼優(yōu)的特困生,規(guī)定:特困生考入年級前200名,獲一等獎學(xué)金500元;考入年級201-500名,獲二等獎學(xué)金300元;考入年級501名以后的特困生將不獲得獎學(xué)金.甲、乙兩名學(xué)生獲一等獎學(xué)金的概率均為$\frac{2}{5}$,獲二等獎學(xué)金的概率均為$\frac{1}{3}$,不獲得獎學(xué)金的概率均為$\frac{4}{15}$.
(1)在學(xué)生甲獲得獎學(xué)金條件下,求他獲得一等獎學(xué)金的概率;
(2)已知甲、乙兩名學(xué)生獲得哪個等級的獎學(xué)金是相互獨立的,求甲、乙兩名學(xué)生所獲得獎學(xué)金總金額X的分布列及數(shù)學(xué)期望
附:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$,$\overline{x}$=6,$\overline{y}$=146,$\sum_{i=1}^{5}$xiyi=4420,$\sum_{i=1}^{5}$xi2=182.

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知兩定點A(-1,0),B(1,0),動點M滿足|AM|=4,線段MB的垂直平分線與線段AM相交于點N,設(shè)點N的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)設(shè)動直線l與曲線C交于P,Q兩點,且OP⊥OQ(其中O為坐標(biāo)原點),試問:是否存在定圓x2+y2=r2(r>0),使得該圓恒與直線l相切?說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

1.某房地產(chǎn)公司的新建小區(qū)有A,B兩種戶型住宅,其中A戶型住宅的每套面積為100平方米,B戶型住宅的每套面積為80平方米.該公司準(zhǔn)備從兩種戶型中各拿出10套試銷售,如表是這20套住宅每平方米的銷售價格(單位:萬元/平方米).
12345678910
A戶型0.71.31.11.41.10.90.80.81.30.9
B戶型1.21.62.31.81.42.11.41.21.71.3
(Ⅰ)根據(jù)如表數(shù)據(jù),完成下列莖葉圖,并分別求出 A,B兩類戶型住宅每平方米銷售價格的中位數(shù);
(Ⅱ)若該公司決定:通過抽簽方式進行試銷售,抽簽活動按A、B戶型分成兩組,購房者從中任選一組參與抽簽(只有一次機會),并根據(jù)抽簽結(jié)果和自己的購買力決定是否購買(僅當(dāng)抽簽結(jié)果超過購買力時,放棄購買).現(xiàn)有某居民獲得優(yōu)先抽簽權(quán),且他的購買力最多為120萬元,為了使其購房成功概率更大,請你向其推薦應(yīng)當(dāng)參加哪個戶型的抽簽活動,并為他估計此次購房的平均單價(單位:萬元/平方米).

查看答案和解析>>

科目: 來源: 題型:填空題

20.已知雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦點分別為F1、F2,若在雙曲線C的右支上存在一點P滿足|PF1|=3|PF2|,且$\overrightarrow{P{F_1}}$•$\overrightarrow{P{F_2}}$=-a2,則雙曲線C的離心率為$\sqrt{3}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

19.已知曲線f(x)=ex-$\frac{1}{e^x}$與直線y=kx有且僅有一個公共點,則實數(shù)k的最大值是( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目: 來源: 題型:選擇題

18.已知cosα=-$\frac{3}{5}$,且α∈($\frac{π}{2}$,π),則tan($\frac{π}{4}$-α)=( 。
A.-$\frac{1}{7}$B.-7C.$\frac{1}{7}$D.7

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知向量$\overrightarrow{a}$=(sin(x+φ),2),$\overrightarrow$=(1,cos(x+φ)),函數(shù)f(x)=($\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$-$\overrightarrow$),則f(x)的最小正周期是( 。
A.1B.2C.πD.

查看答案和解析>>

同步練習(xí)冊答案