相關(guān)習(xí)題
 0  229639  229647  229653  229657  229663  229665  229669  229675  229677  229683  229689  229693  229695  229699  229705  229707  229713  229717  229719  229723  229725  229729  229731  229733  229734  229735  229737  229738  229739  229741  229743  229747  229749  229753  229755  229759  229765  229767  229773  229777  229779  229783  229789  229795  229797  229803  229807  229809  229815  229819  229825  229833  266669 

科目: 來源: 題型:填空題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{3}}x,x>0}\\{{2}^{x},x≤0}\end{array}\right.$,若f(log2$\frac{\sqrt{2}}{2}$)+f[f(9)]=$\frac{1+2\sqrt{2}}{4}$;若f(f(a))≤1,則實數(shù)a的取值范圍是${log}_{2}\frac{1}{3}≤a≤(\frac{1}{3})^{\frac{1}{3}}$,或a≥1.

查看答案和解析>>

科目: 來源: 題型:解答題

16.在數(shù)列{an}中,a1=1,2anan+1+an+1-an=0(n∈N*).
(Ⅰ)求證:數(shù)列{$\frac{1}{{a}_{n}}$}為等差數(shù)列,并求{an}的通項公式;
(Ⅱ)若tan+1(an-1)+1≥0對任意n≥2的整數(shù)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

15.觀察下面的數(shù)表

該表中第6行最后一個數(shù)是126;設(shè)2016是該表的m行第n個數(shù),則m+n=507.

查看答案和解析>>

科目: 來源: 題型:填空題

14.志強同學(xué)在一次課外研究性學(xué)習(xí)中發(fā)現(xiàn)以下一系列等式成立:$\frac{1+(\frac{1}{2})^{2}}{1+{2}^{2}}$=($\frac{1+\frac{1}{2}}{1+2}$)2,$\frac{1+{4}^{3}}{1+(\frac{1}{4})^{3}}$=($\frac{1+4}{1+\frac{1}{4}}$)3,$\frac{{1+{{({-\frac{{\sqrt{2}}}{2}})}^4}}}{{1+{{({-\sqrt{2}})}^4}}}={({\frac{{1-\frac{{\sqrt{2}}}{2}}}{{1-\sqrt{2}}}})^4}$,…,于是他想用符號表示這個規(guī)律,他已經(jīng)寫了一部分,請幫他補充完整,若a,b∈R,b≠1,ab=1,n∈N*,則$\frac{1+{a}^{n}}{1+^{n}}=(\frac{1+a}{1+b})^{n}$.

查看答案和解析>>

科目: 來源: 題型:解答題

13.如圖,斜三棱柱ABC-A1B1C1中,平面ACC1A1⊥平面BCC1B1,E為棱CC1的中點,A1B與AB1交于點O.若AC=CC1=2BC=2,∠ACC1=∠CBB1=60°.
(Ⅰ)證明:直線OE∥平面ABC;
(Ⅱ)證明:平面ABE⊥平面AB1E;
(Ⅲ)求直線A1B與平面ABE所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.斜率為k的直線l過拋物線C:y2=4x的焦點F,且交拋物線C于A、B兩點,已知點P(-1,k),且△PAB的面積為6$\sqrt{3}$,則k的值為(  )
A.±$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{2}$C.±$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目: 來源: 題型:填空題

11.已知F是拋物線y2=4x的焦點,過F作一直線l交拋物線于A,B兩點,若$\overrightarrow{FB}$=3$\overrightarrow{AF}$,則直線l與坐標(biāo)軸圍成的三角形的面積為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知拋物線C:x2=2py(p>0)上一點M(x0,4)到焦點F的距離為5.
(1)求拋物線C的方程;
(2)已知點P(0,m),Q(0,-m)(m>0),過點P作直線與拋物線C交于A,B兩點,試判斷:若$\overrightarrow{AP}$=$λ\overrightarrow{PB}$(λ為實數(shù)),是否恒有$\overrightarrow{QP}•$$\overrightarrow{QA}$=$λ\overrightarrow{QP}•\overrightarrow{QB}$成立,并說明理由.

查看答案和解析>>

科目: 來源: 題型:選擇題

9.已知F是拋物線y2=2x的焦點,A,B是拋物線上的兩點,|AF|+|BF|=3,若直線AB的斜率為3,則線段AB的中點P的坐標(biāo)為( 。
A.(1,$\frac{2}{3}$)B.(1,$\frac{1}{3}$)C.($\frac{1}{3}$,1)D.($\frac{2}{3}$,1)

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知拋物線C:y2=4x,過M(1,0)作直線l與拋物線C交于A,B兩點,當(dāng)∠AOB(O為坐標(biāo)原點)取得最大值時,△AOB面積的值是(  )
A.4B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊答案