相關(guān)習(xí)題
 0  230705  230713  230719  230723  230729  230731  230735  230741  230743  230749  230755  230759  230761  230765  230771  230773  230779  230783  230785  230789  230791  230795  230797  230799  230800  230801  230803  230804  230805  230807  230809  230813  230815  230819  230821  230825  230831  230833  230839  230843  230845  230849  230855  230861  230863  230869  230873  230875  230881  230885  230891  230899  266669 

科目: 來源: 題型:解答題

1.如圖,三棱錐P-ABC中,PA⊥平面ABC,PA=$\sqrt{2}$,AC⊥BC,AC=BC=2,D在棱PB上,且PD=λPB(0<λ<1).
(Ⅰ)若AD⊥PC,求λ的值;
(Ⅱ)在(Ⅰ)的條件下,求二面角B-AD-C的正弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過A(2,4),其頂點的橫坐標(biāo)是$\frac{1}{2}$,它的圖象與x軸交點為B(x1,0)和C(x2,0),且x12+x22=13.
①求函數(shù)的解析式;
②已知點D($\frac{1}{2}$,m),P在函數(shù)的圖象上,求|DP|的最小值.

查看答案和解析>>

科目: 來源: 題型:填空題

9.函數(shù)f(x)=sinx-$\sqrt{3}$cosx(-π≤x≤0)的單調(diào)增區(qū)間是[-$\frac{π}{6}$,0].

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知向量$\overrightarrow{a}$=(1,cosα),$\overrightarrow$=(-2,sinα),且$\overrightarrow{a}$∥$\overrightarrow$.
(1)求tanα的值;
(2)求cos($\frac{π}{2}$+2α)的值.

查看答案和解析>>

科目: 來源: 題型:填空題

7.由曲線y=-x2+2x與y=1-$\sqrt{1-{x}^{2}}$所圍成的圖形的面積為$\frac{π}{4}-\frac{1}{3}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

6.若函數(shù)f(x)=$\frac{2}{\sqrt{x}}$,則其導(dǎo)函數(shù)f′(x)=( 。
A.$\frac{1}{x\sqrt{x}}$B.-$\frac{1}{x\sqrt{x}}$C.-$\frac{2}{x\sqrt{x}}$D.-$\frac{2}{{x}^{2}}$

查看答案和解析>>

科目: 來源: 題型:選擇題

5.在畫兩個變量的散點圖時,下面敘述正確的是( 。
A.預(yù)報變量在x軸上,解釋變量在y軸上
B.預(yù)報變量在y軸上,解釋變量在x軸上
C.兩個變量可以選擇x,y軸中的任意一個
D.樣本點散布在某條直線上

查看答案和解析>>

科目: 來源: 題型:填空題

4.若函數(shù)f(x)=$\frac{{2}^{x}+1}{{2}^{x}-a}$是奇函數(shù),則使f(x)>4成立的x的取值范圍為(0,${log}_{2}\frac{5}{3}$ ).

查看答案和解析>>

科目: 來源: 題型:選擇題

3.如圖,在邊長為4的正方形內(nèi)有一個橢圓,張明同學(xué)用隨機模擬的方法求橢圓的面積,若在正方形內(nèi)隨機產(chǎn)生10000個點,并記錄落在橢圓區(qū)域內(nèi)的點的個數(shù)有4000個,則橢圓區(qū)域的面積約為( 。
A.5.6B.6.4C.7.2D.8.1

查看答案和解析>>

科目: 來源: 題型:選擇題

2.用數(shù)學(xué)歸納法證明:對任意正偶數(shù)n,均有1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n-1}$-$\frac{1}{n}$=2($\frac{1}{n+2}$+$\frac{1}{n+4}$+…+$\frac{1}{2n}$),在驗證n=2正確后,歸納假設(shè)應(yīng)寫成(  )
A.假設(shè)n=k(k∈N*)時命題成立B.假設(shè)n≥k(k∈N*)時命題成立
C.假設(shè)n=2k(k∈N*)時命題成立D.假設(shè)n=2(k+1)(k∈N*)時命題成立

查看答案和解析>>

同步練習(xí)冊答案