相關(guān)習(xí)題
 0  230965  230973  230979  230983  230989  230991  230995  231001  231003  231009  231015  231019  231021  231025  231031  231033  231039  231043  231045  231049  231051  231055  231057  231059  231060  231061  231063  231064  231065  231067  231069  231073  231075  231079  231081  231085  231091  231093  231099  231103  231105  231109  231115  231121  231123  231129  231133  231135  231141  231145  231151  231159  266669 

科目: 來源: 題型:選擇題

7.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{47}{6}$B.$\frac{15}{2}$C.$\frac{23}{3}$D.6

查看答案和解析>>

科目: 來源: 題型:選擇題

6.已知數(shù)列{an}是等差數(shù)列,且a5=$\frac{π}{2}$,若函數(shù)f(x)=sin2x+2cos2$\frac{x}{2}$,記yn=f(an),則數(shù)列{yn}的前9項和為(  )
A.0B.9C.-9D.1

查看答案和解析>>

科目: 來源: 題型:選擇題

5.如圖是某運動員在某個賽季得分的莖葉圖統(tǒng)計表,則該運動員得分的中位數(shù)是(  )
A.2B.24C.23D.26

查看答案和解析>>

科目: 來源: 題型:填空題

4.在△ABC中,已知$\overrightarrow{CD}=2\overrightarrow{BD}$,若$\overrightarrow{AD}=λ\overrightarrow{AB}+u\overrightarrow{AC}$,λ,u∈R,則λu=-2.

查看答案和解析>>

科目: 來源: 題型:填空題

3.我國人口老齡化問題已經(jīng)開始凸顯,只有逐步調(diào)整完善生育政策,才能促進人口長期均衡發(fā)展,十八屆五中全會提出“二胎全面放開”政策.為了解適齡公務(wù)員對放開生育二胎政策的態(tài)度,某部門隨機調(diào)查了100位30到40歲的公務(wù)員,其中男女比例為3:2,被調(diào)查的男性公務(wù)員中,表示有意愿生二胎的占$\frac{5}{6}$;被調(diào)查的女性公務(wù)員中表示有意愿要二胎的占$\frac{3}{8}$.
(1)根據(jù)調(diào)查情況完成下面2×2列聯(lián)表
 男性公務(wù)員女性公務(wù)員 總計 
 生二胎   
 不生二胎   
 總計  
(2)是否有99%以上的把握認為“生二胎與性別有關(guān)”,并說明理由:
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(a+c)(c+d)(d+b)}$.其中n=a+b+c+d.
臨界值表
P(K2≥k00.100.050.010
k02.7063.8416.635

查看答案和解析>>

科目: 來源: 題型:填空題

2.正實數(shù)x,y滿足:x+y=xy,則x2+y2-4xy的最小值為-8.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.下列函數(shù)在區(qū)間(-∞,0)上為增函數(shù)的是( 。
A.f(x)=3-xB.f(x)=$\frac{1}{x-1}$C.f(x)=x2-2x-1D.f(x)=-|x|

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知命題p:?x∈R,sinx+cosx≠2,命題q:?x0∈R,x02+x0+1<0,則( 。
A.命題p∧(?q)是真命題B.命題p∧q是真命題
C.命題p∨q是假命題D.命題p∨(?q)是假命題

查看答案和解析>>

科目: 來源: 題型:解答題

19.某商場對品牌電視的日銷售量(單位:臺)進行最近100天的統(tǒng)計,統(tǒng)計結(jié)果如表:
日銷售量1234
頻數(shù)A40B5
頻率$\frac{2}{5}$C$\frac{3}{20}$D
(1)求出表中A、B、C、D的值;
(2)①試對以上表中的銷售x與頻數(shù)Y的關(guān)系進行相關(guān)性檢驗,是否有95%把握認為x與Y之間具有線性相關(guān)關(guān)系,請說明理由;
②若以上表頻率為概率,且每天的銷售量相互獨立,已知每臺電視機的銷售利潤為200元,X表示該品牌電視機每天銷售利潤的和(單位:元),求X數(shù)學(xué)期望.
參考公式:
相關(guān)系數(shù)r=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i}-n\overline{x}•\overline{y})}{\sqrt{(\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2})(\sum_{i=1}^{n}{y}^{2}-n{\overline{y}}^{2})}}$
參考數(shù)據(jù):$\sqrt{190}$≈13.8,$\sum_{i=1}^{4}{x}_{i}{y}_{i}-4\overline{x}•\overline{y}$=-65,$\sum_{i=1}^{4}{x}_{i}^{2}-4{\overline{x}}^{2}$=5,$\sum_{i=1}^{4}{y}_{i}^{2}-4{\overline{y}}^{2}$=950,其中xi為日銷售量,yi是xi所對應(yīng)的頻數(shù).
相關(guān)性檢驗的臨界值表
n-2 小概率
 0.050.01 
 1 0.9971.000 
 2 0.950 0.990
 3 0.8780.959

查看答案和解析>>

科目: 來源: 題型:解答題

18.4月23日是“世界讀書日”,某中學(xué)在此期間開展了一系列的讀書教育活動,并用簡單隨機抽樣方法抽取了100名學(xué)生對其課外閱讀時間進行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時間(單位:分鐘)的頻率分布直方圖,若將日均課外閱讀時間不低于60分鐘的學(xué)生稱為“讀書謎”,低于60分鐘的學(xué)生稱為“非讀書謎”
(Ⅰ)求x的值并估計該校3000名學(xué)生中讀書謎大概有多少?(將頻率視為概率)
(Ⅱ)根據(jù)已知條件完成下面2×2的列聯(lián)表,并據(jù)此判斷是否有99%的把握認為“讀書謎”與性別有關(guān)?
非讀書迷讀書迷合計
 15 
  45
合計  
(Ⅲ)根據(jù)(Ⅱ)的結(jié)論,能否提出更好的調(diào)查方法來估計該地區(qū)的學(xué)生的課外閱讀時間?說明理由.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d
P(K2≥k00.1000.0500.0250.0100.001
k02.7063.8415.0246.63510.828

查看答案和解析>>

同步練習(xí)冊答案