相關(guān)習(xí)題
 0  231057  231065  231071  231075  231081  231083  231087  231093  231095  231101  231107  231111  231113  231117  231123  231125  231131  231135  231137  231141  231143  231147  231149  231151  231152  231153  231155  231156  231157  231159  231161  231165  231167  231171  231173  231177  231183  231185  231191  231195  231197  231201  231207  231213  231215  231221  231225  231227  231233  231237  231243  231251  266669 

科目: 來源: 題型:解答題

9.在平面直角坐標(biāo)系xOy中,已知曲線C1:$\left\{\begin{array}{l}x=cosθ\\ y=sinθ\end{array}$(θ為參數(shù)),以平面直角坐標(biāo)系xOy的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線l:ρ(2cosθ-sinθ)=6.
(1)將曲線C1上的所有點(diǎn)的橫坐標(biāo)伸長為原來的$\sqrt{3}$倍,縱坐標(biāo)伸長為原來的2倍后得到曲線C2,試寫出直線l的直角坐標(biāo)方程和曲線C2的參數(shù)方程;
(2)在曲線C2上求一點(diǎn)P,使點(diǎn)P到直線l的距離最大,并求出此最大值.

查看答案和解析>>

科目: 來源: 題型:填空題

8.函數(shù)f(x)=$\frac{cosx}{sinx+\sqrt{2}}$(x∈[-$\frac{π}{2}$,$\frac{π}{2}$])的單調(diào)遞減區(qū)間是(-$\frac{π}{4}$,$\frac{π}{2}$].

查看答案和解析>>

科目: 來源: 題型:選擇題

7.若直線a在平面α外,且a和α不垂直.則( 。
A.在α內(nèi)必存在與a平行的直線,不一定存在與a垂直的直線
B.在α內(nèi)不一定存在與a平行的直線,必存在與a垂直的直線
C.在α內(nèi)必存在與a平行的直線.必存在與a垂直的直線
D.在α內(nèi)不一定存在與a平行的直線.不-定存在與a垂直的直線

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{{x}^{3}}{3}$-ax.
(1)若x=1是函數(shù)f(x)的極值點(diǎn),求a的值;
(2)若a>0,求函數(shù)y=f(x)在區(qū)間[0,1]上的最小值.

查看答案和解析>>

科目: 來源: 題型:選擇題

5.已知函數(shù)f(x)=loga(2-x)在其定義域上單調(diào)遞減,則函數(shù)g(x)=loga(1-x2)的單調(diào)減區(qū)間是(  )
A.(-∞,0]B.(-1,0)C.[0,+∞)D.[0,1)

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{1}{x}$+alnx-1,a∈R.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若對任意的x>0,f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

3.在中學(xué)生綜合素質(zhì)評價某個維度的測評中,分“優(yōu)秀、合格、尚待改進(jìn)”三個等級進(jìn)行學(xué)生互評,某校高二年級有男生500人,女生400人,為了了解性別對維度測評結(jié)果的影響,采用分層抽樣方法從高二年級抽取了45名學(xué)生的測評結(jié)果,并作出頻率統(tǒng)計表如表:
表一:男生測評結(jié)果統(tǒng)計
等級優(yōu)秀合格尚待改進(jìn)
頻數(shù)15x5
表二:女生測評結(jié)果統(tǒng)計
等級優(yōu)秀合格尚待改進(jìn)
頻數(shù)153y
(1)計算x,y的值;
(2)由表一表二中統(tǒng)計數(shù)據(jù)完成2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“測評結(jié)果優(yōu)秀與性別有關(guān)”.
男生女生總計
優(yōu)秀
非優(yōu)秀
總計
參考數(shù)據(jù):
P(K2≥k00.100.0500.0250.0100.001
k02.7063.8415.0246.63510.828
(參考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d).

查看答案和解析>>

科目: 來源: 題型:解答題

2.某5名學(xué)生的總成績與數(shù)學(xué)成績?nèi)绫恚?br />
學(xué)生ABCDE
總成績(x)482383421364362
數(shù)學(xué)成績(y)7865716461
(1)畫出散點(diǎn)圖;
(2)求數(shù)學(xué)成績對總成績的回歸方程;
(3)如果一個學(xué)生的總成績?yōu)?50分,試預(yù)測這個學(xué)生的數(shù)學(xué)成績(參考數(shù)據(jù):4822+3832+4212+3642+3622=819 794,482×78+383×65+421×71+364×64+362×61=137 760).
$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.如果關(guān)于x的方程2x+1-a=0有實(shí)數(shù)根,則a的取值范圍是( 。
A.[2,+∞)B.(-1,2]C.(-2,1]D.(0,+∞)

查看答案和解析>>

科目: 來源: 題型:解答題

20.海南中學(xué)對高二學(xué)生進(jìn)行心理障礙測試得到如下列聯(lián)表:
焦慮說謊懶惰總計
女生5101530
男生20105080
總計252065110
試說明在這三種心理障礙中哪一種與性別關(guān)系最大?
參考數(shù)據(jù):K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.50.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.5357.87910.828

查看答案和解析>>

同步練習(xí)冊答案