相關習題
 0  231103  231111  231117  231121  231127  231129  231133  231139  231141  231147  231153  231157  231159  231163  231169  231171  231177  231181  231183  231187  231189  231193  231195  231197  231198  231199  231201  231202  231203  231205  231207  231211  231213  231217  231219  231223  231229  231231  231237  231241  231243  231247  231253  231259  231261  231267  231271  231273  231279  231283  231289  231297  266669 

科目: 來源: 題型:解答題

1.設f(x)=$\left\{\begin{array}{l}{-{x}^{2}+x,x≤1}\\{2x-2,x>1}\end{array}\right.$,若函數(shù)g(x)=f(x)-m有三個零點x1,x2,x3,求x1x2x3的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{2}{x},x≥2}\\{{x}^{2}-3,x<2}\end{array}\right.$,若關于x的方程f(x)=k有三個不相等的實數(shù)根,則實數(shù)k的取值范圍是( 。
A.(-3,1)B.(0,1)C.(-2,2)D.(0,+∞)

查看答案和解析>>

科目: 來源: 題型:填空題

19.方程lg(4x2+4ax)=1g(4x-a+1)有唯一解,則實數(shù)a的取值范圍是[$\frac{1}{5}$,1).

查看答案和解析>>

科目: 來源: 題型:選擇題

18.已知f(x)=$\left\{\begin{array}{l}{|lnx|,x>0}\\{x+2,x≤0}\end{array}\right.$,若關于x的方程f2(x)-af(x)+b=0有6個不同的解,則a的取值范圍為( 。
A.(0,3)B.(0,4)C.(0,4]D.[1,4]

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知函數(shù)f(x)=|x2-1|,g(x)=a|x|-1.
(Ⅰ)求不等式f(x)≤3的解集;
(Ⅱ)若f(x)≥g(x)對任意x∈R恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知圓O:x2+y2=4,將圓O上每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?\frac{1}{2}$,得到曲線C.
(I)寫出曲線C的參數(shù)方程;
(II)設直線l:x-2y+2=0與曲線C相交于A,B兩點,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,直線m過線段AB的中點,且傾斜角是直線l的傾斜角的2倍,求直線m的極坐標方程.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.若f(x)=$\frac{1}{2}$x2+bln(x+2)在(-1,+∞)上是單調增函數(shù),則b的取值范圍是(  )
A.[1,+∞)B.(1,+∞)C.(-∞,-1]D.(-∞,-1)

查看答案和解析>>

科目: 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}\sqrt{1-{x^2}},-1≤x≤1\\-x,x<-1或x>1\end{array}$,且函數(shù)g(x)=f(x)-kx+2k有兩個不同的零點,則實數(shù)k的取值范圍是(  )
A.-$\frac{{\sqrt{3}}}{3}$≤k≤0B.-$\frac{1}{3}$≤k≤0或k=-$\frac{{\sqrt{3}}}{3}$C.k≤-$\frac{{\sqrt{3}}}{3}$或k=-$\frac{1}{3}$D.-$\frac{{\sqrt{3}}}{3}$≤k≤-$\frac{1}{3}$或k=0

查看答案和解析>>

科目: 來源: 題型:解答題

13.在直角坐標系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t\\ y=-1+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù)),以坐標原點為極點,x軸正半軸為極坐標建立極坐標系,曲線C的極坐標方程為ρcos2θ=2sinθ.
(I)寫出直線l和曲線C的直角坐標方程;
(Ⅱ)若動點P在直線l上,Q在曲線C上,求|PQ|的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知極坐標系的極點O與直角坐標系的原點重合,極軸與直角坐標系中x軸的正半軸重合.圓C的參數(shù)方程為$\left\{\begin{array}{l}x=a+acosθ\\ y=asinθ\end{array}$(θ為參數(shù),0<a<5),直線l:ρsin(θ+$\frac{π}{4}$)=2$\sqrt{2}$,若直線l與曲線C相交于A,B兩點,且|AB|=2$\sqrt{2}$.
(Ⅰ)求a;
(Ⅱ)若M,N為曲線C上的兩點,且∠MON=$\frac{π}{3}$,求|OM|+|ON|的最小值.

查看答案和解析>>

同步練習冊答案