相關(guān)習(xí)題
 0  231150  231158  231164  231168  231174  231176  231180  231186  231188  231194  231200  231204  231206  231210  231216  231218  231224  231228  231230  231234  231236  231240  231242  231244  231245  231246  231248  231249  231250  231252  231254  231258  231260  231264  231266  231270  231276  231278  231284  231288  231290  231294  231300  231306  231308  231314  231318  231320  231326  231330  231336  231344  266669 

科目: 來源: 題型:填空題

19.已知點(diǎn)P直角△ABC所在平面外一點(diǎn),PA⊥平面ABC,∠A=90°,PA=1,AB=3,AC=4,則點(diǎn)P到BC的距離是$\frac{13}{5}$.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知在直角坐標(biāo)系xOy中,圓O:x2+y2=1,把圓O的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,得到軌跡方程為C.
(1)以原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系下,直線l為ρcos(θ+$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$,求曲線C與直線l交點(diǎn)的直角坐標(biāo);
(2)若直線l1經(jīng)過點(diǎn)Q(2,1),直線l1與曲線C交于A,B兩點(diǎn),求點(diǎn)Q到A,B兩點(diǎn)的距離之積的最小值.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.定義在(1,+∞)上的函數(shù)f(x)同時(shí)滿足:①對(duì)任意的x∈(1,+∞),恒有f(2x)=$\frac{1}{2}$f(x)成立;②當(dāng)x∈(1,2]時(shí),f(x)=2-x.記函數(shù)g(x)=f(x)-k,若函數(shù)g(x)恰有兩個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是(  )
A.[$\frac{1}{4}$,$\frac{1}{2}}$)B.($\frac{1}{4}$,$\frac{1}{2}$)C.[$\frac{1}{2}$,1)D.($\frac{1}{2}$,1)

查看答案和解析>>

科目: 來源: 題型:選擇題

16.函數(shù)f(x)=lnx-x+1的零點(diǎn)個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:解答題

15.如圖,四邊形ABCD內(nèi)接于圓O,AC與BD相交于點(diǎn)F,AE與圓O相切于點(diǎn)A,與CD的延長線相交于點(diǎn)E,∠ADE=∠BDC.
(Ⅰ)證明:A、E、D、F四點(diǎn)共圓;
(Ⅱ)證明:AB∥EF.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.在以下區(qū)間中,函數(shù)f(x)=ex+x3-4存在零點(diǎn)的是( 。
A.[-1,0]B.[0,1]C.[1,2]D.[2,3]

查看答案和解析>>

科目: 來源: 題型:選擇題

13.正三棱錐A-BCD中,AB⊥AC,且BC=1,則三棱錐A-BCD的高為(  )
A.$\frac{\sqrt{6}}{6}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{x}-3,x∈(0,1]}\\{{2}^{x-1}-1,x∈(1,2]}\end{array}\right.$且g(x)=f(x)-mx在(0,2]內(nèi)有且僅有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A.(-$\frac{9}{4}$,-2]∪(0,$\frac{1}{2}$]B.(-$\frac{11}{4}$,-2]∪(0,$\frac{1}{2}$]C.(-$\frac{9}{4}$,-2]∪(0,$\frac{2}{3}$]D.(-$\frac{11}{4}$,-2]∪(0,$\frac{2}{3}$]

查看答案和解析>>

科目: 來源: 題型:解答題

11.某學(xué)校的籃球興趣小組為調(diào)查該校男女學(xué)生對(duì)籃球的喜好情況,用簡單隨機(jī)抽樣方法調(diào)查了該校100名學(xué)生,調(diào)查結(jié)果如下:
性別
是否喜歡籃球
男生女生
3512
2528
(1)該校共有500名學(xué)生,估計(jì)有多少學(xué)生喜好籃球?
(2)能否有99%的把握認(rèn)為該校的學(xué)生是否喜歡籃球與性別有關(guān)?說明原因;
(3)已知在喜歡籃球的12名女生中,6名女生(分別記為P1,P2,P3,P4,P5,P6)同時(shí)喜歡乒乓球,2名女生(分別記為B1,B2)同時(shí)喜歡羽毛球,4名女生(分別記為V1,V2,V3,V4)同時(shí)喜歡排球,現(xiàn)從喜歡乒乓球、羽毛球、排球的女生中各取1人,求P1,B2不全被選中的概率.
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(a+c)(b+d)(c+d)}$,n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k00.100.0500.0100.005
k02.7063.8416.6357.879

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知點(diǎn)P是二面角α-AB-β兩個(gè)半平面外一點(diǎn),且滿足PC⊥α,PD⊥β,C、D是垂足.
(Ⅰ)試判斷直線AB線與直線CD的位置關(guān)系.并證明你的結(jié)論;
(Ⅱ)若二面角α-AB-β的大小為θ(0<θ<π),求∠CPD的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案