相關(guān)習(xí)題
 0  231408  231416  231422  231426  231432  231434  231438  231444  231446  231452  231458  231462  231464  231468  231474  231476  231482  231486  231488  231492  231494  231498  231500  231502  231503  231504  231506  231507  231508  231510  231512  231516  231518  231522  231524  231528  231534  231536  231542  231546  231548  231552  231558  231564  231566  231572  231576  231578  231584  231588  231594  231602  266669 

科目: 來源: 題型:解答題

13.在一次對由42名學(xué)生參加的課外籃球、排球興趣小組(每人參加且只參加一個(gè)興趣小組)情況調(diào)查中,經(jīng)統(tǒng)計(jì)得到如下2×2列聯(lián)表:(單位:人)
籃球排球總計(jì)
男同學(xué)16622
女同學(xué)81220
總計(jì)241842
(1)據(jù)此判斷能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為參加“籃球小組”或“排球小組”與性別有關(guān)?
(2)在統(tǒng)計(jì)結(jié)果中,按性別用分層抽樣的方法抽取7名同學(xué)進(jìn)行座談,甲、乙兩名女同學(xué)中被抽中的人數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X).
下面是臨界值表供參考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
參考公式:k2=$\frac{n(ad-bc)}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.已知圓C:(x-a)2+(y-b)2=1,平面區(qū)域Ω:$\left\{\begin{array}{l}{x+y-7≤0}\\{x-y+3≥0}\\{y≥0}\end{array}\right.$,若圓心C∈Ω,且圓C與x軸相切,則a2+b2的最大值為( 。
A.5B.29C.37D.49

查看答案和解析>>

科目: 來源: 題型:選擇題

11.執(zhí)行如圖所示的程序框圖,若輸入n的值為10,則輸出S的值是( 。
A.45B.46C.55D.56

查看答案和解析>>

科目: 來源: 題型:填空題

10.函數(shù)f(x)是定義在R上的奇函數(shù),x>0時(shí),f(x)=2x2+2x,則x<0時(shí),f(x)=-2x2+2x.

查看答案和解析>>

科目: 來源: 題型:填空題

9.函數(shù)y=log0.5(x2-4)+$\frac{2}{x-5}$的定義域是{x|x<-2或x>2且x≠5}.

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知奇函數(shù)f(x)的定義域?yàn)椋?∞,0)∪(0,+∞),f′(x)為其導(dǎo)函數(shù),且滿足以下條件
①x>0時(shí),f′(x)<$\frac{3f(x)}{x}$;②f(1)=$\frac{1}{2}$;③f(2x)=2f(x)
則不等式$\frac{f(x)}{4x}$<2x2的解集為( 。
A.(-$\frac{1}{4}$,$\frac{1}{4}$)B.(-∞,-$\frac{1}{4}$)∪($\frac{1}{4}$,+∞)C.(-$\frac{1}{4}$,0)∪(0,$\frac{1}{4}$)D.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知集合S中的元素是正整數(shù),且滿足命題“如果x∈S,則(10-x)∈S”,回答下列問題:
(1)試寫出只有一個(gè)元素的S.
(2)試寫出元素個(gè)數(shù)為2的全部S.
(3)滿足上述命題的集合S共有多少個(gè)?

查看答案和解析>>

科目: 來源: 題型:填空題

6.已知x3+sinx=m,y3+siny=-m,且x,y∈(-$\frac{π}{4},\frac{π}{4}$),m∈R,則tan(x+y+$\frac{π}{3}$)=$\sqrt{3}$.

查看答案和解析>>

科目: 來源: 題型:填空題

5.已知x3+sinx=m,y3+$\frac{1}{8}$sin2y=-$\frac{1}{8}$m,且x,y∈(-$\frac{π}{4},\frac{π}{4}$),m∈R,則tan(x+2y+$\frac{π}{3}$)=$\sqrt{3}$.

查看答案和解析>>

科目: 來源: 題型:解答題

4.求下列函數(shù)的解析式:
(1)已知f(x)是一次函數(shù),并且f[f(x)]=4x+3,求f(x);
(2)已知f(2x+1)=4x2+8x+3,求f(x);
(3)已知f(x+$\frac{1}{x}$)=x2+$\frac{1}{{x}^{2}}$-3,求f(x);
(4)已知f(x)-2f($\frac{1}{x}$)=3x+2,求f(x).

查看答案和解析>>

同步練習(xí)冊答案