相關(guān)習(xí)題
 0  231945  231953  231959  231963  231969  231971  231975  231981  231983  231989  231995  231999  232001  232005  232011  232013  232019  232023  232025  232029  232031  232035  232037  232039  232040  232041  232043  232044  232045  232047  232049  232053  232055  232059  232061  232065  232071  232073  232079  232083  232085  232089  232095  232101  232103  232109  232113  232115  232121  232125  232131  232139  266669 

科目: 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的一段圖象如圖所示,
(1)求函數(shù)的解析式.
(2)解不等式f(x)>1.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

5.已知圓C的圓心坐標(biāo)為(3,2),且過(guò)定點(diǎn)O(0,0).
(1)求圓C的方程;
(2)P為圓C上的任意一點(diǎn),定點(diǎn)Q(8,0),求線段PQ中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

4.已知角α的終邊過(guò)點(diǎn)P(5a,-12a),a<0.求:
(1)tanα;      
(2)sinα+cosα.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

3.設(shè)函數(shù)f(x)=a|x-1|+1(a>0).
(Ⅰ)當(dāng)a=1時(shí),求不等式f(x)>6-|x+2|的解集;
(Ⅱ)若函數(shù)f(x)的圖象與圓(x-1)2+(y-1)2=1相交形成的劣弧不超過(guò)圓周長(zhǎng)的$\frac{1}{6}$.求正數(shù)a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

2.已知直線l的極坐標(biāo)方程是ρcosθ-ρsinθ-1=0,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,曲線C的參數(shù)方程是$\left\{{\begin{array}{l}{x=cosα-1}\\{y=sinα}\end{array}}\right.$(α為參數(shù)).
(Ⅰ)求直線l的直角坐標(biāo)方程和曲線C的普通方程;
(Ⅱ)若直線l與x、y軸交于M、N兩點(diǎn),點(diǎn)P為曲線C上任一點(diǎn).求△PMN的面積的最小值.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

1.雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\;(a>0,b>0)$的右焦點(diǎn)為F,其右支上總有點(diǎn)P,使得|OM|=|PF|(M為PF的中點(diǎn),O為坐標(biāo)原點(diǎn)),則C的離心率的取值范圍是(1,3].

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

20.在△ABC中,若$A=\frac{π}{3},tanB=\frac{1}{2},AB=2\sqrt{3}+1$,則BC=$\sqrt{15}$.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

19.等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a2=3,S6=36,則a4=( 。
A.6B.7C.8D.9

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

18.某省2015年全省高中男生身高統(tǒng)計(jì)調(diào)查數(shù)據(jù)顯示:全省100000名男生的身高服從正態(tài)分布N(170.5,16).現(xiàn)從某校高三年級(jí)男生中隨機(jī)抽取50名測(cè)量身高,測(cè)量發(fā)現(xiàn)被測(cè)學(xué)生身高全部介于157.5cm和187.5cm之間,將測(cè)量結(jié)果按如下方式分成6組:第一組[157.5,162.5),第二組[162.5,167.5),…,第6組[182.5,187.5),圖是按上述分組方法得到的頻率分布直方圖.
(1)試評(píng)估我校高三年級(jí)男生在全省高中男生中的平均身高狀況;
(2)求這50名男生身高在177.5cm以上(177.5cm)的人數(shù);
(3)在這50名男生身高在177.5cm以上(含177.5cm)的人中任意抽取2人,該2人中身高排名(以高到低)在全省前130名的人數(shù)記為ξ,求ξ的數(shù)學(xué)期望.
(參考數(shù)據(jù):若ξ~N(μ,σ2),P(μ-σ<ξ≤μ+σ)=0.6826,P(μ-2σ<ξ≤μ+2σ)=0.9544,P(μ-3σ<ξ≤μ+3σ)=0.9974.)

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

17.一枚硬幣連擲3次,僅有兩次正面向上的概率是( 。
A.$\frac{1}{8}$B.$\frac{3}{8}$C.$\frac{5}{8}$D.$\frac{1}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案