相關(guān)習(xí)題
 0  232152  232160  232166  232170  232176  232178  232182  232188  232190  232196  232202  232206  232208  232212  232218  232220  232226  232230  232232  232236  232238  232242  232244  232246  232247  232248  232250  232251  232252  232254  232256  232260  232262  232266  232268  232272  232278  232280  232286  232290  232292  232296  232302  232308  232310  232316  232320  232322  232328  232332  232338  232346  266669 

科目: 來源: 題型:解答題

5.(1)化簡:$\frac{tan(π+α)cos(2π+α)sin(α-\frac{3π}{2})}{cos(-α-3π)sin(-3π-α)}$;
(2)已知f(x)=$\frac{sin(π-x)cos(2π-x)tan(-x+π)}{{cos(-\frac{π}{2}+x)}}$,求f(-$\frac{31π}{3}$)的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.圓柱的底面半徑為r,其全面積是側(cè)面積的$\frac{3}{2}$倍.O是圓柱中軸線的中點(diǎn),若在圓柱內(nèi)任取一點(diǎn)P,則使|PO|≤r的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目: 來源: 題型:選擇題

3.(x+$\frac{a}{x}$)(3x-$\frac{2}{x}$)5的展開式中各項(xiàng)系數(shù)的和為3,則該展開式中常數(shù)項(xiàng)為(  )
A.2520B.1440C.-1440D.-2520

查看答案和解析>>

科目: 來源: 題型:解答題

2.如圖,在正方體ABCD-A1B1C1D1中.
(Ⅰ)證明:BD1⊥A1D;
(Ⅱ)求$\overrightarrow{B{C}_{1}}$與$\overrightarrow{AC}$夾角的大。

查看答案和解析>>

科目: 來源: 題型:選擇題

1.程序框圖輸出a,b,c的含義是( 。
A.輸出的a是原來的c,輸出的b是原來的a,輸出的c是原來的b
B.輸出的a是原來的c,輸出的b是新的x,輸出的c是原來的b
C.輸出的a是原來的c,輸出的b是新的x,輸出的c是原來的b
D.輸出的a,b,c均等于x

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知復(fù)數(shù)z滿足(1+2i3)z=1+2i(i為虛數(shù)單位),則z的共軛復(fù)數(shù)$\overline{z}$等于( 。
A.$\frac{3}{5}$+$\frac{4}{5}i$B.-$\frac{3}{5}$+$\frac{4}{5}i$C.$\frac{3}{5}$-$\frac{4}{5}i$D.-$\frac{3}{5}-\frac{4}{5}$i

查看答案和解析>>

科目: 來源: 題型:解答題

19.以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,已知點(diǎn)P的直角坐標(biāo)為(1,-5),點(diǎn)M的極坐標(biāo)為(8,$\frac{π}{2}$),若直線l過點(diǎn)P,且傾斜角為$\frac{π}{3}$,圓C以M為圓心、8為半徑.
(1)求直線l的參數(shù)方程和圓C的極坐標(biāo)方程;
(2)若直線l和圓C相交于點(diǎn)A、B,求|PA|•|PB|的值.

查看答案和解析>>

科目: 來源: 題型:填空題

18.已知不等式x2+px+1>2x+p,當(dāng)|p|≤2時(shí)恒成立,則實(shí)數(shù)x的取值范圍是(-∞,-1)∪(3,+∞).

查看答案和解析>>

科目: 來源: 題型:填空題

17.二次不等式ax2+bx+c<0的解集為{x|x<$\frac{1}{3}$或x>$\frac{1}{2}$},則關(guān)于x的不等式cx2-bx+a>0的解集為(-3,-2).

查看答案和解析>>

科目: 來源: 題型:選擇題

16.已知實(shí)數(shù)x,y 滿足$\left\{\begin{array}{l}{x-3y-6≤0}\\{y≤2x+4}\\{2x+3y-12≤0}\end{array}\right.$,直線(1+λ)x+(1-2λ)y+3λ-12=0(λ∈R)過定點(diǎn)A(x0,y0),則z=$\frac{y-{y}_{0}}{x-{x}_{0}}$的取值范圍為( 。
A.(-∞,$\frac{1}{5}$]∪[7,+∞)B.[$\frac{1}{5}$,7]C.(-∞,$\frac{1}{7}$]∪[5,+∞)D.[$\frac{1}{7}$,5]

查看答案和解析>>

同步練習(xí)冊答案