相關(guān)習(xí)題
 0  238001  238009  238015  238019  238025  238027  238031  238037  238039  238045  238051  238055  238057  238061  238067  238069  238075  238079  238081  238085  238087  238091  238093  238095  238096  238097  238099  238100  238101  238103  238105  238109  238111  238115  238117  238121  238127  238129  238135  238139  238141  238145  238151  238157  238159  238165  238169  238171  238177  238181  238187  238195  266669 

科目: 來源: 題型:填空題

12.已知命題P:對任意的x∈[1,2],x2-a≥0,命題Q:存在x∈R,x2+2ax+2-a=0,若命題“P且Q”是真命題,則實(shí)數(shù)a的取值范圍是a≤-2或a=1.

查看答案和解析>>

科目: 來源: 題型:填空題

11.(3a+2b)6的展開式中的第3項的二項式系數(shù)為15.(用數(shù)字作答)

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知直線l:$\left\{\begin{array}{l}x=2+tcosα\\ y=tsinα\end{array}$(t為參數(shù)),橢圓C:$\left\{\begin{array}{l}x=3cosϕ\\ y=\sqrt{5}sinϕ\end{array}$(φ為參數(shù)),F(xiàn)為橢圓C的右焦點(diǎn).
(1)當(dāng)α=$\frac{π}{4}$時,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求直線l和曲線C的極坐標(biāo)方程;
(2)設(shè)直線l與橢圓C交于A、B兩點(diǎn),求|FA|•|FB|的最大值與最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知函數(shù)g(x)=ex(x+1).
(1)求函數(shù)g(x)在(0,1)處的切線方程;
(2)設(shè)x>0,討論函數(shù)h(x)=g(x)-a(x3+x2)(a>0)的零點(diǎn)個數(shù).

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知拋物線${C_1}:{y^2}=2px(p>0)$的焦點(diǎn)為F,準(zhǔn)線為l,圓${C_2}:{x^2}+{y^2}={p^2}$被直線l截得的線段長為$2\sqrt{3}$.
(1)求拋物線C1和圓C2的方程;
(2)設(shè)直線l與x軸的交點(diǎn)為A,過點(diǎn)A的直線n與拋物線C1交于M、N兩點(diǎn),求證:直線MF的斜率與直線NF的斜率的和為定值.

查看答案和解析>>

科目: 來源: 題型:解答題

7.2017年某市開展了“尋找身邊的好老師”活動,市六中積極行動,認(rèn)真落實(shí),通過微信關(guān)注評選“身邊的好老師”,并對選出的班主任工作年限不同的五位“好老師”的班主任的工作年限和被關(guān)注數(shù)量進(jìn)行了統(tǒng)計,得到如下數(shù)據(jù):
班主任工作年限x(單位:年)4681012
被關(guān)注數(shù)量y(單位:百人)1020406050
(1)若”好老師”的被關(guān)注數(shù)量y與其班主任的工作年限x滿足線性回歸方程,試求回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$,并就此分析:“好老師”的班主任工作年限為15年時被關(guān)注的數(shù)量;
(2)若用$\frac{y_i}{x_i}$(i=1,2,3,4,5)表示統(tǒng)計數(shù)據(jù)時被關(guān)注數(shù)量的“即時均值”(四舍五入到整數(shù)),從“即時均值”中任選2組,求這2組數(shù)據(jù)之和小于8的概率.(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$).

查看答案和解析>>

科目: 來源: 題型:解答題

6.如圖,已知AC是圓O的直徑,PA⊥平面ABCD,E是PC的中點(diǎn),∠DAC=∠AOB.
(1)證明:BE∥平面PAD
(2)求證:平面BEO⊥平面PCD.

查看答案和解析>>

科目: 來源: 題型:填空題

5.在△ABC中,三邊a,b,c的對角分別為A,B,C,若a2+b2=2018c2,則$\frac{2sinAsinBcosC}{{1-{{cos}^2}C}}$=2017.

查看答案和解析>>

科目: 來源: 題型:填空題

4.點(diǎn)A、B、C、D在同一個球的球面上,$AB=BC=2,AC=2\sqrt{2}$,若四面體ABCD體積的最大值為$\frac{4}{3}$,則該球的表面積為9π.

查看答案和解析>>

科目: 來源: 題型:填空題

3.若x、y滿足約束條件$\left\{\begin{array}{l}x+y-1≤0\\ 2x-y+1≥0\\ x-2y-1≤0\end{array}\right.$,則z=x-y的最大值為1.

查看答案和解析>>

同步練習(xí)冊答案