相關(guān)習(xí)題
 0  238202  238210  238216  238220  238226  238228  238232  238238  238240  238246  238252  238256  238258  238262  238268  238270  238276  238280  238282  238286  238288  238292  238294  238296  238297  238298  238300  238301  238302  238304  238306  238310  238312  238316  238318  238322  238328  238330  238336  238340  238342  238346  238352  238358  238360  238366  238370  238372  238378  238382  238388  238396  266669 

科目: 來源: 題型:填空題

6.已知F1、F2是橢圓C1:$\frac{{x}^{2}}{4}$+y2=1與雙曲線C2的兩個公共焦點(diǎn),P是C1,C2一個公共點(diǎn).若$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,則C2的離心率是$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知函數(shù)f(x)對任意實(shí)數(shù)x均有f(x)=kf(x+2),其中常數(shù)k為負(fù)數(shù),f(x)在區(qū)間[0,2]上滿足f(x)=x(x-2).
(1)當(dāng)k=-1時,求f(-1),f(2.5)的值;
(2)求f(x)在區(qū)間[-2,4]上的解析式;
(3)求f(x)在區(qū)間[-2,4]上的最大值,并求出相應(yīng)的自變量的取值.

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知函數(shù)f(x)=2x2-4x-5.    
(1)當(dāng)x∈[-2,2]時,求函數(shù)f(x)的最值;
(2)當(dāng)x∈[t,t+1]時,求函數(shù)f(x)的最小值g(t);
(3)在第(2)問的基礎(chǔ)上,求g(t)的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}-2x\;,\;\;x≥0\\{x^2}+2x\;,\;\;x<0\end{array}\right.$.
(1)畫出y=f(x)的圖象,并寫出單調(diào)遞增區(qū)間;
(2)根據(jù)圖象討論關(guān)于x的方程f(x)=m的實(shí)根的個數(shù).

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知集合A={x|-1<x<4},$B=\left\{{x\left|{-5<x<\frac{3}{2}}\right.}\right\}$,C={x|1-2a<x<2a}.
(1)求A∩B,A∪B;
(2)若集合C=∅,求實(shí)數(shù)a的取值范圍;
(3)若C⊆(A∩B),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

1.解下列不等式
(1)-x2+3x+4≥0
(2)x2+2x+(1-a)(1+a)≥0.

查看答案和解析>>

科目: 來源: 題型:填空題

20.(1)“已知函數(shù)f(x)=x2-mx+1對一切實(shí)數(shù)x,f(x)>0恒成立”;
(2)“關(guān)于x的不等式x2<9-m2有實(shí)數(shù)解”.
若以上結(jié)論中(1)錯誤并且(2)正確,則實(shí)數(shù)m的取值范圍為(-3,-2]∪[2,3).

查看答案和解析>>

科目: 來源: 題型:填空題

19.函數(shù)$y=\frac{{\sqrt{3x+4}}}{x}$的定義域?yàn)閧x|x≥-$\frac{4}{3}$且x≠0}.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知函數(shù)f(x)=x2-2ax+a+2,a∈R.
(1)若方程f(x)=0有兩個小于2的不等實(shí)根,求實(shí)數(shù)a的取值范圍;
(2)若不等式f(x)≥-1-ax對任意x∈R恒成立,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)f(x)在[0,2]上的最大值為4,求實(shí)數(shù)a的值.

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{{2}^{x}+1}{{2}^{x}-1}$.
(Ⅰ) 求函數(shù)f(x)的定義域;
(Ⅱ) 判斷函數(shù)f(x)的奇偶性,并證明;
(Ⅲ) 若f(x)=-$\frac{5}{3}$,求x的值.

查看答案和解析>>

同步練習(xí)冊答案