相關(guān)習(xí)題
 0  239278  239286  239292  239296  239302  239304  239308  239314  239316  239322  239328  239332  239334  239338  239344  239346  239352  239356  239358  239362  239364  239368  239370  239372  239373  239374  239376  239377  239378  239380  239382  239386  239388  239392  239394  239398  239404  239406  239412  239416  239418  239422  239428  239434  239436  239442  239446  239448  239454  239458  239464  239472  266669 

科目: 來(lái)源: 題型:解答題

12.已知△ABC的直角頂點(diǎn)A在y軸上,點(diǎn)B(1,0),D為斜邊BC的中點(diǎn),且AD平行于x軸.
(1)求點(diǎn)C的軌跡方程;
(2)設(shè)點(diǎn)C的軌跡為曲線Γ,直線BC與Γ的另一個(gè)交點(diǎn)為E,以CE為直徑的圓交y軸于點(diǎn)M,N,記圓心為P,∠MPN=α,求α的最大值.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

11.設(shè)向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$+$\overrightarrow$|=3,|$\overrightarrow{a}$-$\overrightarrow$|=1,$\overrightarrow{a}$與$\overrightarrow$夾角為θ,則$\frac{|\overrightarrow{a}|}{|\overrightarrow|cosθ}$+$\frac{|\overrightarrow|}{|\overrightarrow{a}|cosθ}$=(  )
A.$\frac{1}{2}$B.$\frac{5}{2}$C.$\frac{5}{4}$D.3

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

10.已知A,B,C,D四點(diǎn)共面,BC=2,AB2+AC2=20,$\overrightarrow{CD}=3\overrightarrow{CA}$,則|$\overrightarrow{BD}$|的最大值為10.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

9.函數(shù)f(x)是定義在(0,+∞)上的可導(dǎo)函數(shù),f'(x)為其導(dǎo)函數(shù),若x•f'(x)+f(x)=ex(x-1),且f(2)=0,則不等式f(x)<0的解集為( 。
A.(0,1)B.(0,2)C.(1,2)D.(2,+∞)

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

8.設(shè)f(x)是偶函數(shù),g(x)是奇函數(shù),且f(x)+g(x)=ex+1,則f(x)=$\frac{{e}^{x}+{e}^{-x}}{2}$.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

7.函數(shù)f(x)=ln(x+e)3(x>0)的值域?yàn)椋?,+∞).

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

6.將圓C:(x-1)2+y2=25按向量$\overrightarrow{a}$=(1,1)平移得到圓C′,則圓C′的圓心和半徑分別為( 。
A.(1,0),5B.(0,1),5C.(-1,0),5D.(2,1),5

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

5.已知tanα=2,α∈(0,$\frac{π}{2}$),則sin2α+cos2α=$\frac{1}{5}$.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

4.設(shè)數(shù)列{an}滿足a1=$\frac{1}{3}$,an+1=an+$\frac{{a}_{n}^{2}}{{n}^{2}}$,n∈N,*
(1)求a2,a3;
(2)證明:數(shù)列{an}為遞增數(shù)列
(3)證明:$\frac{n}{2n+1}$≤an$≤\frac{2n-1}{2n+1}$,n∈N*

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

3.己知對(duì)所有實(shí)數(shù)x,不等式x2log2$\frac{2(a-1)}{a}$+2xlog2$\frac{2a}{a-1}$+log2$\frac{(a-1)^{2}}{4{a}^{2}}$<0恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案