相關(guān)習(xí)題
 0  246042  246050  246056  246060  246066  246068  246072  246078  246080  246086  246092  246096  246098  246102  246108  246110  246116  246120  246122  246126  246128  246132  246134  246136  246137  246138  246140  246141  246142  246144  246146  246150  246152  246156  246158  246162  246168  246170  246176  246180  246182  246186  246192  246198  246200  246206  246210  246212  246218  246222  246228  246236  266669 

科目: 來源: 題型:選擇題

9.已知{an}是等差數(shù)列,a3=5,a9=17,數(shù)列{bn}的前n項和Sn=3n-1,若1+am=b4,則正整數(shù)m等于( 。
A.29B.28C.27D.26

查看答案和解析>>

科目: 來源: 題型:解答題

8.如圖,梯形ABCD中,DC∥AB,AD=DC=CB=2,AB=4,矩形AEFC中,AE=$\sqrt{3}$,平面AEFC⊥平面ABCD,點G是線段EF的中點
(Ⅰ)求證:AG⊥平面BCG
(Ⅱ)求二面角D-GC-B的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

7.如圖是某市11月1日至15日的空氣質(zhì)量指數(shù)趨勢圖,空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量優(yōu)良,空氣質(zhì)量指數(shù)大于200,表示空氣質(zhì)量重度污染,該市某校準備舉行為期3天(連續(xù)3天)的運動會,在11月1日至11月13日任選一天開幕
(Ⅰ)求運動會期間至少兩天空氣質(zhì)量優(yōu)良的概率;
(Ⅱ)記運動會期間,空氣質(zhì)量優(yōu)良的天數(shù)為ξ,求隨機變量ξ的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目: 來源: 題型:填空題

6.過原點的直線l與雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右兩支分別相交于A,B兩點,F(xiàn)(-$\sqrt{3}$,0)是雙曲線C的左焦點,若|FA|+|FB|=4,$\overrightarrow{FA}$$•\overrightarrow{FB}$=0.則雙曲線C的方程=$\frac{{x}^{2}}{2}-{y}^{2}=1$.

查看答案和解析>>

科目: 來源: 題型:填空題

5.若在圓C:x2+y2=4內(nèi)任取一點P(x,y),則滿足$\left\{\begin{array}{l}{y<1}\\{y>{x}^{2}}\end{array}\right.$的概率=$\frac{1}{3π}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.已知{an}是等差數(shù)列,a3=5,a9=17,數(shù)列{bn}的前n項和Sn=3n,若am=b1+b4,則正整數(shù)m等于( 。
A.29B.28C.27D.26

查看答案和解析>>

科目: 來源: 題型:選擇題

3.將函數(shù)y=sin(2x-$\frac{π}{3}$)的圖象向左移動$\frac{π}{3}$個單位,得到函數(shù)y=f(x)的圖象,則函數(shù)y=f(x)的一個單調(diào)遞增區(qū)間是( 。
A.[-$\frac{π}{4}$,$\frac{π}{4}$]B.[-$\frac{π}{2}$,0]C.[-$\frac{5π}{12}$,$\frac{π}{12}$]D.[$\frac{π}{12}$,$\frac{7π}{12}$]

查看答案和解析>>

科目: 來源: 題型:填空題

2.在銳角三角形ABC中,若tanA,tanB,tanC依次成等差數(shù)列,則tanAtanC的值為3.

查看答案和解析>>

科目: 來源: 題型:填空題

1.在平面直角坐標系中,設(shè)向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-3,2),則$\overrightarrow{a}$.($\overrightarrow{a}$-$\overrightarrow$)=4.

查看答案和解析>>

科目: 來源: 題型:解答題

20.設(shè)函數(shù)f(x)=$\frac{x}{m(x+2)}$,方程f(x)=x有唯一解,數(shù)列{an}滿足f(an)=an+1(n∈N*),且f(1)=$\frac{2}{3}$數(shù)列{bn}滿足bn=$\frac{{4-3{a_n}}}{a_n}({n∈{N^*}})$.
(Ⅰ)求證:數(shù)列$\left\{{\frac{1}{a_n}}\right\}$是等差數(shù)列;
(Ⅱ)數(shù)列{cn}滿足cn=$\frac{1}{{{b_n}•{b_{n+1}}}}({n∈{N^*}})$,其前n項和為Sn,若存在n∈N*,使kSn=$\frac{1}{2}n+4({k∈R})$成立,求k的最小值;
(Ⅲ)若對任意n∈N*,使不等式$\frac{t}{{({\frac{1}{b_1}+1})({\frac{1}{b_2}+1})…({\frac{1}{b_n}+1})}}≤\frac{1}{{\sqrt{2n+1}}}$成立,求實數(shù)t的最大值.

查看答案和解析>>

同步練習(xí)冊答案