相關(guān)習(xí)題
 0  251450  251458  251464  251468  251474  251476  251480  251486  251488  251494  251500  251504  251506  251510  251516  251518  251524  251528  251530  251534  251536  251540  251542  251544  251545  251546  251548  251549  251550  251552  251554  251558  251560  251564  251566  251570  251576  251578  251584  251588  251590  251594  251600  251606  251608  251614  251618  251620  251626  251630  251636  251644  266669 

科目: 來源: 題型:填空題

15.不等式$\frac{1}{x-2}$>1的解集為{x|2<x<3}.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.雙曲線$\frac{x^2}{3}-\frac{y^2}{4}=1$的左焦點(diǎn)到右準(zhǔn)線的距離為(  )
A.$\frac{{3\sqrt{7}}}{7}$B.$\frac{22}{5}$C.$\frac{28}{5}$D.$\frac{{10\sqrt{7}}}{7}$

查看答案和解析>>

科目: 來源: 題型:選擇題

13.點(diǎn)(-1,2)到直線2x+y-10=0的距離為( 。
A.$\frac{10}{3}$B.$2\sqrt{5}$C.2D.$\frac{{10\sqrt{3}}}{3}$

查看答案和解析>>

科目: 來源: 題型:填空題

12.設(shè)A={(x,y)|y=1+$\sqrt{4-{x}^{2}}$},B={(x,y)|y=k(x-2)+4},若A∩B中含有兩個(gè)元素,則實(shí)數(shù)k的取值范圍是($\frac{5}{12}$,$\frac{3}{4}$].

查看答案和解析>>

科目: 來源: 題型:填空題

11.已知雙曲線${x^2}-\frac{y^2}{3}=1$的離心率為$\frac{m}{2}$,拋物線y2=mx的焦點(diǎn)為F,點(diǎn)p(2,y0)(y0>0)在此拋物線上,M為線段PF的中點(diǎn),則點(diǎn)M到該拋物線的準(zhǔn)線的距離為$\frac{5}{2}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.將側(cè)棱相互垂直的三棱錐稱為“直角三棱錐”,三棱錐的側(cè)面和底面分別叫直角三棱錐的“直角面和斜面”;過三棱錐頂點(diǎn)及斜面任兩邊中點(diǎn)的截面均稱為斜面的“中面”.已知直角三角形具有性質(zhì):“斜邊的中線長等于斜邊邊長的一半”.仿照此性質(zhì)寫出直角三棱錐具有的性質(zhì)(  )
A.直角三棱錐中,每個(gè)斜面的中面面積等于斜面面積的三分之一
B.直角三棱錐中,每個(gè)斜面的中面面積等于斜面面積的四分之一
C.直角三棱錐中,每個(gè)斜面的中面面積等于斜面面積的二分之一
D.直角三棱錐中,每個(gè)斜面的中面面積與斜面面積的關(guān)系不確定

查看答案和解析>>

科目: 來源: 題型:填空題

9.如圖,動(dòng)點(diǎn)M在圓x2+y2=8上,A(2,0)為一定點(diǎn),則∠OMA的最大值為$\frac{π}{4}$.

查看答案和解析>>

科目: 來源: 題型:填空題

8.下列四個(gè)結(jié)論:(1)兩條直線都和同一個(gè)平面平行,則這兩條直線平行.(2)兩條直線沒有公共點(diǎn),則這兩條直線平行.(3)兩條直線都和第三條直線垂直,則這兩條直線平行.(4)一條直線和一個(gè)平面內(nèi)無數(shù)條直線沒有公共點(diǎn),則這條直線和這個(gè)平面平行.其中正確的個(gè)數(shù)為0.

查看答案和解析>>

科目: 來源: 題型:填空題

7.已知函數(shù)f(x)是奇函數(shù),且當(dāng)x>0時(shí),$f(x)=-\sqrt{x+1}$,則當(dāng)x∈R時(shí),f(x)的解析式為f(x)=$\left\{\begin{array}{l}{-\sqrt{x+1},x>0}\\{0,x=0}\\{\sqrt{-x+1},x<0}\end{array}\right.$.

查看答案和解析>>

科目: 來源: 題型:解答題

6.判斷下列函數(shù)的奇偶性:
(1)$f(x)=\frac{{{x^2}+1}}{{\sqrt{x+1}}}$;     
(2)f(x)=|x+2|-|x-2|.

查看答案和解析>>

同步練習(xí)冊答案