相關(guān)習(xí)題
 0  252439  252447  252453  252457  252463  252465  252469  252475  252477  252483  252489  252493  252495  252499  252505  252507  252513  252517  252519  252523  252525  252529  252531  252533  252534  252535  252537  252538  252539  252541  252543  252547  252549  252553  252555  252559  252565  252567  252573  252577  252579  252583  252589  252595  252597  252603  252607  252609  252615  252619  252625  252633  266669 

科目: 來源: 題型:解答題

9.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)F(1,0),且經(jīng)過點(diǎn)P($\frac{1}{2}$,$\frac{3\sqrt{5}}{4}$)
(1)求橢圓C的方程;
(2)若直線l與橢圓C相切,過F作FQ⊥l,垂足為Q,求證:|OQ|為定值(其中O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目: 來源: 題型:解答題

8.正整數(shù)x1、x2、…、x7滿足x6=144,xn+3=xn+2(xn+1+xn),n=1,2,3…,求x7

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知x、y為自然數(shù),且滿足方程9x2-4y2=5,求x,y的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

6.已知$\frac{π}{4}<α<π,cos(α-\frac{π}{4})=\frac{3}{5}$,則tanα=( 。
A.7B.7或$\frac{1}{7}$C.-7D.$-\frac{1}{7}或7$

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知函數(shù)$f(x)=sin(\sqrt{3}x+ϕ)(0<ϕ<π)$,f′(x)為f(x)的導(dǎo)函數(shù).若g(x)=f(x)+f′(x)為奇函數(shù),求φ的值.

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知圓C:x2+y2+2x=15,M是圓C上的動點(diǎn),N(1,0),MN的垂直平分線交CM于點(diǎn)P,求點(diǎn)P的軌跡方程.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,F(xiàn)為橢圓的右焦點(diǎn),點(diǎn)A,B分別為橢圓的上下頂點(diǎn),過點(diǎn)B作AF的垂線,垂足為M.
(1)若$a=\sqrt{2}$,△ABM的面積為1,求橢圓方程;
(2)是否存在橢圓,使得點(diǎn)B關(guān)于直線AF對稱的點(diǎn)D仍在橢圓上.若存在,求橢圓的離心率的值;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

2.如圖,地面上有一豎直放置的圓形標(biāo)志物,圓心為C,與地面的接觸點(diǎn)為G.與圓形標(biāo)志物在同一平面內(nèi)的地面上點(diǎn)P處有一個(gè)觀測點(diǎn),且PG=50m.在觀測點(diǎn)正前方10m處(即PD=10m)有一個(gè)高為10m(即ED=10m)的廣告牌遮住了視線,因此在觀測點(diǎn)所能看到的圓形標(biāo)志的最大部分即為圖中從A到F的圓。
(1)若圓形標(biāo)志物半徑為25m,以PG所在直線為x軸,G為坐標(biāo)原點(diǎn),建立直角坐標(biāo)系,求圓C和直線PF的方程;
(2)若在點(diǎn)P處觀測該圓形標(biāo)志的最大視角(即∠APF)的正切值為$\frac{41}{39}$,求該圓形標(biāo)志物的半徑.

查看答案和解析>>

科目: 來源: 題型:解答題

1.在△ABC中,∠B=45°,D是邊BC上一點(diǎn),AD=5,CD=3,AC=7.
(1)求∠ADC的值;
(2)求$\overrightarrow{BA}•\overrightarrow{DA}$的值.

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知函數(shù)f(x)=Asin(ωx+φ)(其中A,ω,φ為常數(shù),且A>0,ω>0,-$\frac{π}{2}<ϕ<\frac{π}{2}$)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)若f(α)=$\frac{6}{5}$,0<α<$\frac{π}{2}$,求$f(2α+\frac{π}{12})$的值.

查看答案和解析>>

同步練習(xí)冊答案