相關(guān)習(xí)題
 0  252693  252701  252707  252711  252717  252719  252723  252729  252731  252737  252743  252747  252749  252753  252759  252761  252767  252771  252773  252777  252779  252783  252785  252787  252788  252789  252791  252792  252793  252795  252797  252801  252803  252807  252809  252813  252819  252821  252827  252831  252833  252837  252843  252849  252851  252857  252861  252863  252869  252873  252879  252887  266669 

科目: 來源: 題型:填空題

3.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,$\overrightarrow{a}$與$\overrightarrow$的夾角為120°,那么($\overrightarrow{a}$+$\overrightarrow$)•(2$\overrightarrow{a}$-$\overrightarrow$)=-4.

查看答案和解析>>

科目: 來源: 題型:解答題

2.拋物線y2=2px(p>0)上一點M到焦點F的距離|MF|=2p,求點M的坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知在△ABC中,A,B的坐標(biāo)分別為(-1,2),(4,3),AC的中點M在y軸上,BC的中點N在x軸上.
(1)求點C的坐標(biāo);
(2)求直線MN的方程.

查看答案和解析>>

科目: 來源: 題型:填空題

20.已知tan(α-$\frac{β}{2}$)=$\frac{1}{2}$,tan(β-$\frac{α}{2}$)=-$\frac{1}{3}$,則tan$\frac{α+β}{2}$=$\frac{1}{7}$.

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,求:
(1)$\overrightarrow{a}$•$\overrightarrow$;
(2)$\overrightarrow{a}$2-$\overrightarrow$2;
(3)(2$\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$+3$\overrightarrow$);
(4)|$\overrightarrow{a}$+$\overrightarrow$|.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.下列函數(shù)在(0,+∞)上是增函數(shù)的是( 。
A.y=9-x2B.y=|x-1|C.y=($\frac{1}{2}$)xD.y=x${\;}^{\frac{1}{2}}$

查看答案和解析>>

科目: 來源: 題型:解答題

17.在平面直角坐標(biāo)系xOy中,已知圓C1:(x+8)2+(y+6)2=25和圓C2:(x-4)2+(y-6)2=25.
(1)若直線1過原點,且被C2截得的弦長為6,求直線l的方程;
(2)是否存在點P滿足:過點P的無窮多對互相垂直的直線l1和12,它們分別與圓C1和圓C2相交,且直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,若存在求出點P的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.下列說法不正確的是( 。
A.空間中,一組對邊平行且相等的四邊形是一定是平行四邊形
B.同一平面的兩條垂線一定共面
C.三角形一定是平面圖形
D.過一條直線有且只有一個平面與已知平面垂直

查看答案和解析>>

科目: 來源: 題型:解答題

15.若數(shù)列{an}的前n項和Sn滿足2Sn=3an-1(n∈N*),等差數(shù)列{bn}滿足b1=3a1,b3=S2+3
(1)求數(shù)列{an}、{bn}的通項公式;
(2)設(shè)cn=$\frac{n+2}{_{n}•_{n+1}•{a}_{n}}$(n∈N*),且{cn}的前n項和為Tn,求證:Tn$<\frac{1}{4}$.

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知點A(3,2),點M到F($\frac{1}{2}$,0)的距離比它到y(tǒng)軸的距離大$\frac{1}{2}$.
(1)求點M的軌跡方程;
(2)是否存在M,使|MA|+|MF|取得最小值?若存在,求此時點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案