相關(guān)習(xí)題
 0  261215  261223  261229  261233  261239  261241  261245  261251  261253  261259  261265  261269  261271  261275  261281  261283  261289  261293  261295  261299  261301  261305  261307  261309  261310  261311  261313  261314  261315  261317  261319  261323  261325  261329  261331  261335  261341  261343  261349  261353  261355  261359  261365  261371  261373  261379  261383  261385  261391  261395  261401  261409  266669 

科目: 來源: 題型:

【題目】隨著西部大開發(fā)的深入,西南地區(qū)的大學(xué)越來越受到廣大考生的青睞,下表是西南地區(qū)某大學(xué)近五年的錄取平均分與省一本線對(duì)比表:

年份

2014

2015

2016

2017

2018

年份代碼

1

2

3

4

5

省一本線

505

500

525

500

530

錄取平均分533

534

566

547

580

錄取平均分與省一本線分差y

28

34

41

47

50

(1)根據(jù)上表數(shù)據(jù)可知,yt之間存在線性相關(guān)關(guān)系,求y關(guān)于t的線性回歸方程;

(2)據(jù)以往數(shù)據(jù)可知,該大學(xué)每年的錄取分?jǐn)?shù)X服從正態(tài)分布,其中為當(dāng)年該大學(xué)的錄取平均分,假設(shè)2019年該省一本線為520分,李華2019年高考考了569分,他很喜歡這所大學(xué),想第一志愿填報(bào),請(qǐng)利用概率與統(tǒng)計(jì)知識(shí),給李華一個(gè)合理的建議.(第一志愿錄取可能性低于,則建議謹(jǐn)慎報(bào)考)

參考公式:,.

參考數(shù)據(jù):,.

查看答案和解析>>

科目: 來源: 題型:

【題目】為了解本屆高二學(xué)生對(duì)文理科的選擇與性別是否有關(guān),現(xiàn)隨機(jī)從高二的全體學(xué)生中抽取了若干名學(xué)生,據(jù)統(tǒng)計(jì),男生35人,理科生40人,理科男生30人,文科女生15人。

(1)完成如下2×2列聯(lián)表,判斷是否有99.9%的把握認(rèn)為本屆高二學(xué)生“對(duì)文理科的選擇與性別有關(guān)”?

男生

女生

合計(jì)

文科

理科

合計(jì)

(2)已采用分層抽樣的方式從樣本的所有女生中抽取了5人,現(xiàn)從這5人中隨機(jī)抽取2人參加座談會(huì),求抽到的2人恰好一文一理的概率。

0.15

0.10

0.05

0.01

0.005

0.001

k

2.072

2.706

3.841

6.635

7.879

10.828

(參考公式,其中為樣本容量)

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),.

(1)若函數(shù)的圖像與軸無交點(diǎn),求的取值范圍;

(2)若方程在區(qū)間上存在實(shí)根,求的取值范圍;

(3)設(shè)函數(shù),,當(dāng)時(shí)若對(duì)任意的,總存在,使得,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】近年來,某市為響應(yīng)國(guó)家號(hào)召,大力推行全民健身運(yùn)動(dòng),加強(qiáng)對(duì)市內(nèi)各公共體育運(yùn)動(dòng)設(shè)施的維護(hù),幾年來,經(jīng)統(tǒng)計(jì),運(yùn)動(dòng)設(shè)施的使用年限x(年)和所支出的維護(hù)費(fèi)用y(萬元)的相關(guān)數(shù)據(jù)如圖所示,根據(jù)以往資料顯示y對(duì)x呈線性相關(guān)關(guān)系。

(1)求出y關(guān)于x的回歸直線方程少

(2)試根據(jù)(1)中求出的回歸方程,預(yù)測(cè)使用年限至少為幾年時(shí),維護(hù)費(fèi)用將超過100萬元?

參考公式:對(duì)于一組數(shù)據(jù)(x1,yl),(x2,y2),…,(xn,Yn),其回歸方程的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

科目: 來源: 題型:

【題目】為了解重慶市高中學(xué)生在面對(duì)新高考模式“3+1+2”的科目選擇中,物理與歷史的二選一是否與性別有關(guān),某高中隨機(jī)對(duì)該校50名高一學(xué)生進(jìn)行了問卷調(diào)查得到相關(guān)數(shù)據(jù)如下列聯(lián)表:

選物理

選歷史

合計(jì)

男生

5

女生

10

合計(jì)

己知在這50人中隨機(jī)抽取1人,抽到選物理的人的概率為。

1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整,并判斷是否有99.5%的把握認(rèn)為物理與歷史的二選一與性別有關(guān)?

0.15

0.10

0.05

0.01

0.005

0.001

k

2.072

2.706

3.841

6.635

7.879

10.828

(參考公式,其中為樣本容量)

2)己知在選物理的10位女生中有3人選擇了化學(xué)、地理,有5人選擇了化學(xué)、生物,有2人選擇了生物、地理,現(xiàn)從這10人中抽取3人進(jìn)行更詳細(xì)的學(xué)科意愿調(diào)查,記抽到的3人中選擇化學(xué)的有X人,求隨機(jī)變量X的分布列及數(shù)學(xué)期望。

查看答案和解析>>

科目: 來源: 題型:

【題目】某工廠每日生產(chǎn)一種產(chǎn)品噸,每日生產(chǎn)的產(chǎn)品當(dāng)日銷售完畢,日銷售額為萬元,產(chǎn)品價(jià)格隨著產(chǎn)量變化而有所變化,經(jīng)過段時(shí)間的產(chǎn)銷, 得到了的一組統(tǒng)計(jì)數(shù)據(jù)如下表:

日產(chǎn)量

1

2

3

4

5

日銷售量

5

12

16

19

21

(1)請(qǐng)判斷中,哪個(gè)模型更適合到畫之間的關(guān)系?可從函數(shù)增長(zhǎng)趨勢(shì)方面給出簡(jiǎn)單的理由;

(2)根據(jù)你的判斷及下面的數(shù)據(jù)和公式,求出關(guān)于的回歸方程,并估計(jì)當(dāng)日產(chǎn)量時(shí),日銷售額是多少?

參考數(shù)據(jù):,

線性回歸方程中,,,

查看答案和解析>>

科目: 來源: 題型:

【題目】下表為年至年某百貨零售企業(yè)的線下銷售額(單位:萬元),其中年份代碼年份

年份代碼

線下銷售額

(1)已知具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測(cè)年該百貨零售企業(yè)的線下銷售額;

(2)隨著網(wǎng)絡(luò)購(gòu)物的飛速發(fā)展,有不少顧客對(duì)該百貨零售企業(yè)的線下銷售額持續(xù)增長(zhǎng)表示懷疑,某調(diào)查平臺(tái)為了解顧客對(duì)該百貨零售企業(yè)的線下銷售額持續(xù)增長(zhǎng)的看法,隨機(jī)調(diào)查了位男顧客、位女顧客(每位顧客從“持樂觀態(tài)度”和“持不樂觀態(tài)度”中任選一種),其中對(duì)該百貨零售企業(yè)的線下銷售額持續(xù)增長(zhǎng)持樂觀態(tài)度的男顧客有人、女顧客有人,能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為對(duì)該百貨零售企業(yè)的線下銷售額持續(xù)增長(zhǎng)所持的態(tài)度與性別有關(guān)?

參考公式及數(shù)據(jù):

查看答案和解析>>

科目: 來源: 題型:

【題目】(本小題滿分12分)

圍建一個(gè)面積為360m2的矩形場(chǎng)地,要求矩形場(chǎng)地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對(duì)面的新墻上要留一個(gè)寬度為2m的進(jìn)出口,如圖所示,已知舊墻的維修費(fèi)用為45/m,新墻的造價(jià)為180/m,設(shè)利用的舊墻的長(zhǎng)度為x(單位:元)。

)將y表示為x的函數(shù);

)試確定x,使修建此矩形場(chǎng)地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用。

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)到拋物線焦點(diǎn)的距離為

(1)求的值;

(2) 設(shè)是拋物線上異于的兩個(gè)不同點(diǎn),過軸的垂線,與直線交于點(diǎn),過軸的垂線,與直線交于點(diǎn),過軸的垂線,與直線分別交于點(diǎn)

求證:①直線的斜率為定值;

是線段的中點(diǎn).

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標(biāo)系,已知一動(dòng)圓經(jīng)過點(diǎn)且在軸上截得的弦長(zhǎng)為4,設(shè)動(dòng)圓圓心的軌跡為曲線

1求曲線的方程;

2過點(diǎn)作互相垂直的兩條直線,與曲線交于,兩點(diǎn)與曲線交于,兩點(diǎn),線段,的中點(diǎn)分別為,求證:直線過定點(diǎn),并求出定點(diǎn)的坐標(biāo)

查看答案和解析>>

同步練習(xí)冊(cè)答案