相關(guān)習題
 0  261619  261627  261633  261637  261643  261645  261649  261655  261657  261663  261669  261673  261675  261679  261685  261687  261693  261697  261699  261703  261705  261709  261711  261713  261714  261715  261717  261718  261719  261721  261723  261727  261729  261733  261735  261739  261745  261747  261753  261757  261759  261763  261769  261775  261777  261783  261787  261789  261795  261799  261805  261813  266669 

科目: 來源: 題型:

【題目】已知幾何體,其中四邊形為直角梯形,四邊形為矩形, ,且 .

(1)試判斷線段上是否存在一點,使得平面,請說明理由;

(2)若,求該幾何體的表面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知過拋物線的焦點,斜率為的直線交拋物線于兩點,且.

(1)求該拋物線的方程;

(2) 為坐標原點,為拋物線上一點,若,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】某蛋糕店制作并銷售一款蛋糕,當天每售出個利潤為元,未售出的每個虧損元.根據(jù)以往天的統(tǒng)計資料,得到如下需求量表,元旦這天,此蛋糕店制作了個這種蛋糕.以(單位:個, )表示這天的市場需求量. (單位:元)表示這天售出該蛋糕的利潤.

需求量/個

天數(shù)

10

20

30

25

15

(1)將表示為的函數(shù),根據(jù)上表,求利潤不少于元的概率;

(2)估計這天的平均需求量(同一組數(shù)據(jù)用該區(qū)間的中點值作代表);

(3)元旦這天,該店通過微信展示打分的方式隨機抽取了名市民進行問卷調(diào)查,調(diào)查結(jié)果如下表所示,已知在購買意愿強的市民中,女性的占比為.

購買意愿強

購買意愿弱

合計

女性

28

男性

22

合計

28

22

50

完善上表,并根據(jù)上表,判斷是否有的把握認為市民是否購買這種蛋糕與性別有關(guān)?

附: .

0.05

0.025

0.010

0.005

3.841

5.024

6.635

7.879

查看答案和解析>>

科目: 來源: 題型:

【題目】某幾何體的三視圖如圖所示,則該幾何體的體積是( )

A. B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,四棱錐中,是邊長等于2的等邊三角形,四邊形是菱形,,是棱上的點,.,分別是,的中點.

(1)求證:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】若一個人下半身長(肚臍至足底)與全身長的比近似為,稱為黃金分割比),堪稱“身材完美”,且比值越接近黃金分割比,身材看起來越好,若某人著裝前測得頭頂至肚臍長度為72,肚臍至足底長度為103,根據(jù)以上數(shù)據(jù),作為形象設(shè)計師的你,對TA的著裝建議是( )

A.身材完美,無需改善B.可以戴一頂合適高度的帽子

C.可以穿一雙合適高度的增高鞋D.同時穿戴同樣高度的增高鞋與帽子

查看答案和解析>>

科目: 來源: 題型:

【題目】已知直線為參數(shù)),曲線為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸建立直角坐標系.

(1)求曲線的極坐標方程,直線的普通方程;

(2)把直線向左平移一個單位得到直線,設(shè)與曲線的交點為 , 為曲線上任意一點,求面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

時,畫出函數(shù)的圖像,并寫出使得的所有組成的集合.

若該函數(shù)的圖像都在軸的上方,求的取值范圍.

若該函數(shù)在區(qū)間上不單調(diào),求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知一元二次函數(shù)fx=ax2+bx+ca0,c0)的圖象與x軸有兩個不同的公共點,其中一個公共點的坐標為(c,0),且當0xc時,恒有fx)>0

1)當a=1時,求出不等式fx)<0的解;

2)求出不等式fx)<0的解(用a,c表示);

3)若以二次函數(shù)的圖象與坐標軸的三個交點為頂點的三角形的面積為8,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓上的點(不包括橫軸上點)滿足:與兩點連線的斜率之積等于,,兩點也在曲線上.

(1)求橢圓的方程;

(2)過橢圓的右焦點作斜率為1的直線交橢圓于,兩點,求

(3)求橢圓上的點到直線距離的最小值.

查看答案和解析>>

同步練習冊答案