相關(guān)習(xí)題
 0  265959  265967  265973  265977  265983  265985  265989  265995  265997  266003  266009  266013  266015  266019  266025  266027  266033  266037  266039  266043  266045  266049  266051  266053  266054  266055  266057  266058  266059  266061  266063  266067  266069  266073  266075  266079  266085  266087  266093  266097  266099  266103  266109  266115  266117  266123  266127  266129  266135  266139  266145  266153  266669 

科目: 來源: 題型:

【題目】已知abc,dR,矩陣A 的逆矩陣A1.若曲線C在矩陣A對應(yīng)的變換作用下得到直線y2x1,求曲線C的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知矩陣B

1 AB;

2 若曲線C1在矩陣AB對應(yīng)的變換作用下得到另一曲線C2,求C2的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】某游戲公司對今年新開發(fā)的一些游戲進行評測,為了了解玩家對游戲的體驗感,研究人員隨機調(diào)查了300名玩家,對他們的游戲體驗感進行測評,并將所得數(shù)據(jù)統(tǒng)計如圖所示,其中.

1)求這300名玩家測評分數(shù)的平均數(shù);

2)由于該公司近年來生產(chǎn)的游戲體驗感較差,公司計劃聘請3位游戲?qū)<覍τ螒蜻M行初測,如果3人中有2人或3人認為游戲需要改進,則公司將回收該款游戲進行改進;若3人中僅1人認為游戲需要改進,則公司將另外聘請2位專家二測,二測時,2人中至少有1人認為游戲需要改進的話,公司則將對該款游戲進行回收改進.已知該公司每款游戲被每位專家認為需要改進的概率為,且每款游戲之間改進與否相互獨立.

i)對該公司的任意一款游戲進行檢測,求該款游戲需要改進的概率;

ii)每款游戲聘請專家測試的費用均為300/人,今年所有游戲的研發(fā)總費用為50萬元,現(xiàn)對該公司今年研發(fā)的600款游戲都進行檢測,假設(shè)公司的預(yù)算為110萬元,判斷這600款游戲所需的最高費用是否超過預(yù)算,并通過計算說明.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,四棱錐的一個側(cè)面為等邊三角形,且平面平面,四邊形是平行四邊形,,,.

1)求證:;

2)求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的離心率為上一點.

(1)求橢圓的方程;

(2)設(shè)分別關(guān)于兩坐標軸及坐標原點的對稱點,平行于的直線于異于的兩點.點關(guān)于原點的對稱點為.證明:直線軸圍成的三角形是等腰三角形.

查看答案和解析>>

科目: 來源: 題型:

【題目】(多選題)下列說法中,正確的命題是(

A.已知隨機變量服從正態(tài)分布,,則

B.以模型去擬合一組數(shù)據(jù)時,為了求出回歸方程,設(shè),將其變換后得到線性方程,則,的值分別是0.3

C.已知兩個變量具有線性相關(guān)關(guān)系,其回歸直線方程為,若,,則

D.若樣本數(shù)據(jù),,,的方差為2,則數(shù)據(jù),,的方差為16

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,雙曲線的右頂點為A,右焦點為F,點B在雙曲線的右支上,矩形OFBD與矩形AEGF相似,且矩形OFBD與矩形AEGF的面積之比為21,則該雙曲線的離心率為

A.

B.

C.

D.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,、是兩個小區(qū)所在地,、到一條公路的垂直距離分別為,兩端之間的距離為.

1)某移動公司將在之間找一點,在處建造一個信號塔,使得的張角與、的張角相等,試確定點的位置.

2)環(huán)保部門將在之間找一點,在處建造一個垃圾處理廠,使得、所張角最大,試確定點的位置.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知數(shù)列滿足:,其中為實數(shù),為正整數(shù).

1)對任意實數(shù),求證:不成等比數(shù)列;

2)試判斷數(shù)列是否為等比數(shù)列,并證明你的結(jié)論.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)常數(shù))滿足.

1)求出的值,并就常數(shù)的不同取值討論函數(shù)奇偶性;

2)若在區(qū)間上單調(diào)遞減,求的最小值;

3)在(2)的條件下,當取最小值時,證明:恰有一個零點且存在遞增的正整數(shù)數(shù)列,使得成立.

查看答案和解析>>

同步練習(xí)冊答案