【題目】已知點O是△ABC的外心,作正方形OCDE,下列說法:①點O是△AEB的外心;②點O是△ADC的外心;③點O是△BCE的外心;④點O是△ADB的外心.其中一定不成立的說法是( 。
A.②④B.①③C.②③④D.①③④
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在大課間活動中,同學(xué)們積極參加體育鍛煉,小明就本班同學(xué)“我最喜愛的體育項目”進行了一次調(diào)查統(tǒng)計,下面是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息,解答以下問題:
(1)該班共有_____名學(xué)生;
(2)補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,“乒乓球”部分所對應(yīng)的圓心角度數(shù)為_____;
(4)學(xué)校將舉辦體育節(jié),該班將推選5位同學(xué)參加乒乓球活動,有3位男同學(xué)(A,B,C)和2位女同學(xué)(D,E),現(xiàn)準備從中選取兩名同學(xué)組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①、②、③均是6×6的正方形網(wǎng)格,每個小正方形的頂點稱為格點,小正方形邊長為1,點A、C在格點上.在給定的網(wǎng)格中按要求畫圖,所面圖形的頂點均在格點上.
(1)在圖①中畫出以AC為底邊的等腰直角三角形ABC;
(2)在圖②中畫出以AC為腰的等腰三角形ACD,且△ACD的面積為8;
(3)在圖③中作一個平行四邊形ACMN,使平行四邊形ACMN的面積為(1)中△ABC面積的2倍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,分別為正方形的邊,的中點,與交于點,為的中點,則下列結(jié)論:①,②,③,④.其中正確結(jié)論的有( )
A.個B.個C.個D.個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“校園讀詩詞誦經(jīng)典比賽”結(jié)束后,評委劉老師將此次所有參賽選手的比賽成績(得分均為整數(shù))進行整理,并分別繪制成扇形統(tǒng)計圖和頻數(shù)直方圖,部分信息如下圖:
扇形統(tǒng)計圖 頻數(shù)直方圖
(1)參加本次比賽的選手共有________人,參賽選手比賽成績的中位數(shù)在__________分數(shù)段;補全頻數(shù)直方圖.
(2)若此次比賽的前五名成績中有名男生和名女生,如果從他們中任選人作為獲獎代表發(fā)言,請利用表格或畫樹狀圖求恰好選中男女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC,以AC為直徑作⊙O交BC于點D,過點D作DE⊥AB,垂足為E.
(1)求證:DE是⊙O的切線.
(2)若DE,∠C=30°,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象,其對稱軸為x=1,下列結(jié)論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-,y1),(,y2)是拋物線上兩點,則y1<y2, 其中結(jié)論正確的是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,二次函數(shù) y=ax2+bx+2 的圖象與 x 軸交于 A(﹣3,0),B(1,0)兩點,與 y 軸交于點C.
(1)求這個二次函數(shù)的關(guān)系解析式 ,x 滿足什么值時 y﹤0 ?
(2)點 p 是直線 AC 上方的拋物線上一動點,是否存在點 P,使△ACP 面積最大?若存在,求出點 P的坐標;若不存在,說明理由
(3)點 M 為拋物線上一動點,在 x 軸上是否存在點 Q,使以 A、C、M、Q 為頂點的四邊形是平行四邊形?若存在,直接寫出點 Q 的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于,兩點.
(1)求反比例函數(shù)的解析式;
(2)點是軸上的一動點,試確定點的坐標,使最;
(3)直線與線段有交點,直接寫出的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com