【題目】設計建造一條道路,路基的橫斷面為梯形ABCD,如圖(單位:米).設路基高為h,兩側的坡角分別為和,已知h=2,,,.
(1)求路基底部AB的寬;
(2)修筑這樣的路基1000米,需要多少土石方?
【答案】(1)16米;(2)26000立方米.
【解析】
(1)分別過D、C作下底AB的垂線,設垂足為E、F.在Rt△ADE和Rt△BCF中,可根據(jù)h的長以及坡角的度數(shù)或坡比的值,求出AE、BF的長,進而可求得AB的值.
(2)根據(jù)(1)得出的梯形下底寬,可求出梯形的面積,進而可求出需要多少土石方.
(1)過D作DE⊥AB于E,過C作CF⊥AB于F.
Rt△ADE中,∠α=45°,DE=h=2,
∴AE=DE=h=2.
Rt△BCF中,tanβ=,CF=h=2,
∴BF=2CF=4.
故AB=AE+EF+BF=AE+CD+BF=2+10+4=16.
(2)S梯形ABCD=(AB+CD)h=×(10+16)×2=26.
因此所需的土石方數(shù)是:26×1000=26000(立方米).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊,點為射線上一點,延長至點,使得,聯(lián)結并延長交射線于點。
(1)當點在邊上時,如圖1,若,則
(2)當點在邊上時,如圖2,若,則(1)的結論還成立嗎?若成立,請證明;若不成立,寫出與的數(shù)量關系并證明。
(3)當點在邊的延長線上時,則(1)的結論還成立嗎?若成立,請證明;若不成立,寫出與的數(shù)量關系并證明。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點﹙,﹚,﹙,﹚,交軸于點,交軸于點.
求反比例函數(shù)和一次函數(shù)的表達式;
連接,,求的面積;
根據(jù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)的值的的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義感知:我們把頂點關于軸對稱,且交于軸上同一點的兩條拋物線叫做“孿生拋物線”,該點叫“孿生拋物線”的“共點”.如圖所示的拋物線與是一對“孿生拋物線”,其“共點”為點.
初步運用:
判斷下列論斷是否正確?正確的在題后橫線上打“√”,錯誤的則打“”:
①“孿生拋物線”的“共點”不能分布在軸上.________
②“孿生拋物線”與的“共點”坐標為.________
填空:拋物線的“孿生拋物線”的解析式為________.
延伸拓展:在平面直角坐標系中,記“孿生拋物線”的兩頂點分別為,,且,其“共點”與,,三點恰好構成一個面積為的菱形,試求該“孿生拋物線”的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小明在一次高爾夫球爭霸賽中從山坡上的點打出一球向球洞飛去,球的飛行路線為拋物線,如果不考慮空氣阻力,當球達到最大鉛垂高度時,球移動的水平距離為.已知山坡與水平方向的夾角為,,兩點相距.
求出點的坐標;
求拋物線解析式.并判斷小明這一桿能否把高爾夫球從點直接打入球洞?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象經(jīng)過點和,下列關于此二次函數(shù)的敘述,正確的是( )
A. 當時,的值小于
B. 當時,的值大于
C. 當時,的值等于
D. 當時,的值大于
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,則在下列條件:①∠C=∠D ②AC=AD ③∠CBA=∠DBA ④BC=BD中任選一個能判定△ABC≌△ABD的是( )
A. ①②③④ B. ②③④ C. ①③④ D. ①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象過點和點,對稱軸為直線.
求該二次函數(shù)的關系式和頂點坐標;
結合圖象,解答下列問題:
①當時,求函數(shù)的取值范圍.
②當時,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】冬天,小芳給自己家剛剛裝滿水且顯示溫度為的太陽能熱水器里的水加熱.她每過一段時間去觀察一下顯示溫度,并記錄如下:
時間(分鐘) | 0 | 5 | 10 | 15 | 20 | …… |
顯示溫度() | 16 | 17 | 18 | 19 | 20 | …… |
(1)請直接寫出顯示溫度()與加熱時間()之間的函數(shù)關系式;
(2)如果她給熱水器設定的最高溫度為,問:要加熱多長時間才能達到設定的最高溫度?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com