【題目】已知,等邊△ABC,點 E 在 BA 的延長線上,點 D 在 BC 上,且 ED=EC.
(1)如圖 1,求證:AE=DB;
(2)如圖 2,將△BCE 繞點 C 順時針旋轉(zhuǎn) 60°至△ACF(點 B、E 的對應(yīng)點分別為點 A、F),連接 EF.在不添加任何輔助線的情況下,請直接寫出圖中四對線段,使每對線段長度之差等于 AB 的長.
【答案】(1)見解析;(2);;;.
【解析】
(1)在BA上截取BF=BD,連接DF,根據(jù)等邊三角形的性質(zhì)可得∠BAC=∠B=∠ACB=60°,從而證出△BDF為等邊三角形,然后利用AAS證出△CEA≌△EDF,從而得出AE=DF,即可證出結(jié)論;
(2)根據(jù)圖形、全等三角形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)和等量代換即可得出結(jié)論.
解:(1)在BA上截取BF=BD,連接DF
∵△ABC是等邊三角形
∴∠BAC=∠B=∠ACB=60°,
∵BF=BD,
∴△BDF為等邊三角形
∴BD=DF,∠BFD=∠FDB=60°
∴∠BFD=∠BAC
∴FD∥AC
∴∠EAC=∠DFE
∵ED=EC
∴∠EDC=∠ECD
∵∠EDC+∠EDF=180°-∠FDB=120°,∠ECD+∠CEA=180°-∠B=120°
∴∠CEA=∠EDF
在△CEA和△EDF中
∴△CEA≌△EDF
∴AE=DF
∴AE=DB
(2)由圖可知:
∵AE=DB
∴
由旋轉(zhuǎn)的性質(zhì)可得:BE=AF
∴
∴
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知中,,,,點,分別是邊,上的動點,且,點關(guān)于的對稱點恰好落在的內(nèi)角平分線上,則長為_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的布袋里裝有個白球,個黑球和若干個紅球,它們除顏色外其余都相同,從中任意摸出個球,是白球的概率為.
(1)布袋里紅球的個數(shù)_______;
(2)小亮和小麗將布袋中的白球取出個,利用剩下的球進行摸球游戲,他們約定:先摸出個球后不放回,再摸出個球,若兩個球中有紅球則小亮勝,否則小麗勝,你認為這個游戲公平嗎?請用列表或畫樹狀圖說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小元步行從家去火車站,走到 6 分鐘時,以同樣的速度回家取物品,然后從家乘出租車趕往火車站,結(jié)果比預(yù)計步行時間提前了3 分鐘.小元離家路程S(米)與時間t(分鐘)之間的函數(shù)圖象如圖,從家到火車站路程是( )
A.1300 米B.1400 米C.1600 米D.1500 米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校七、八年級各有300名學(xué)生,近期對他們“2020年新型冠狀病毒”防治知識進行了線上測試,為了了解他們的掌握情況,從七、八年級各隨機抽取了50名學(xué)生的成績(百分制),并對數(shù)據(jù)(成績)進行整理、描述和分析.下面給出了部分信息:
a.七年級的頻數(shù)分布直方圖如下(數(shù)據(jù)分為5組:50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):
b.七年級學(xué)生成績在80≤x<90的這一組是:
80 80.5 81 82 82 83 83.5 84
84 85 86 86.5 87 88 89 89
c.七、八年級學(xué)生成績的平均數(shù)、中位數(shù)、眾數(shù)如下:
年級 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
七年級 | 85.3 | m | 90 |
八年級 | 87.2 | 85 | 91 |
根據(jù)以上信息,回答下列問題:
(1)表中m的值為 ;
(2)在隨機抽樣的學(xué)生中,防治知識成績?yōu)?/span>84分的學(xué)生,在 年級排名更靠前,理由是 ;
(3)若各年級防治知識的前90名將參加線上防治知識競賽,預(yù)估七年級分數(shù)至少達到 分的學(xué)生才能入選;
(4)若85分及以上為“優(yōu)秀”,請估計七年級達到“優(yōu)秀”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)著作(九章算術(shù))中有如下問題:“今有人持金出五關(guān),前關(guān)二而稅一.次關(guān)三而稅一,次關(guān)四而稅一,次關(guān)五而稅一,次關(guān)六而稅一,并五關(guān)所稅,適重一斤.”其意思為“今有人持金出五關(guān),第關(guān)所收稅金為持金的,第關(guān)所收稅金為剩余金的,第關(guān)所收稅金為剩余金的,第關(guān)所收稅金為剩余金的,第關(guān)所收稅金為剩余金的,關(guān)所收稅金之和,恰好重斤.”若設(shè)這個人原本持金斤,根據(jù)題意可列方程為__________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,點E是直線AB上的點,過點E的直線l交直線CD于點F,EG平分∠BEF交CD于點G.在直線l繞點E旋轉(zhuǎn)的過程中,圖中∠1,∠2的度數(shù)可以分別是( )
A.30°,110°B.56°,70°C.70°,40°D.100°,40°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:
數(shù)學(xué)活動課上,李老師給出如下定義:如果一個三角形有一邊上的中線等于這條邊的一半,那么稱這個三角形為“智慧三角形”.
理解:
(1)如圖,已知、是上兩點,請在圓上找出滿足條件的點,使為“智慧三角形”(畫出點的位置,保留作圖痕跡);
(2)如圖,在正方形中,是的中點,是上一點,且,試判斷是否為“智慧三角形”,并說明理由;
運用:
(3)如圖,在平面直角坐標(biāo)系中,的半徑為1,點是直線上的一點,若在上存在一點,使得為“智慧三角形”,當(dāng)其面積取得最小值時,直接寫出此時點的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com