【題目】如圖:在ABC中,∠C=90°,AD是∠BAC的平分線,DEABE,FAC上,BD=DF,BC=8,AB=10,則FCD的面積為__________

【答案】6.

【解析】

根據(jù)題意可證ADE≌△ACD,可得AE=AC=6,CD=DE,根據(jù)勾股定理可得DE,CD的長(zhǎng),再根據(jù)勾股定理可得FC的長(zhǎng),即可求FCD的面積.

AD是∠BAC的平分線,DEABE,∠C=90°

CD=DE

CD=DEAD=AD

RtACDRtADE

AE=AC

∵在RtABC中,AC=6

AE=6

BE=AB-AE=4

∵在RtDEB中,BD2=DE2+BE2

DE2+16=8-DE2

DE=3 BD=5CD=3

BD=DF

DF=5

RtDCF中,FC==4

∴△FCD的面積為=×FC×CD=6

故答案為6

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)在用描點(diǎn)法畫二次函數(shù)的圖象時(shí),列出下面的表格:

x

y

根據(jù)表格提供的信息,有下列結(jié)論:

該拋物線的對(duì)稱軸是直線;該拋物線與y軸的交點(diǎn)坐標(biāo)為;若點(diǎn)是該拋物線上一點(diǎn),則其中錯(cuò)誤的個(gè)數(shù)是  

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在ABC,AHBC于點(diǎn)H,AH上取一點(diǎn)D,連接DC,使DA=DC,且∠ADC=2DBC,DH=2,BC=6,AB=_________________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠AOB=α(90°<α<180°),∠COD在∠AOB的內(nèi)部,OM平分∠AOC,ON平分∠BOD

1)若∠COD=180°-α?xí)r,探索下面兩個(gè)問題:

①如圖1,當(dāng)OCOD左側(cè),求∠MON的度數(shù);

②當(dāng)OCOD右側(cè),請(qǐng)?jiān)趫D2內(nèi)補(bǔ)全圖形,并求出∠MON的度數(shù)(用含α的代數(shù)式表示);

2)如圖3,當(dāng)∠COD=kα,且COOD左側(cè)時(shí),直接寫出∠MON的度數(shù)(用含α,k的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)興趣小組對(duì)函數(shù)y=x+的圖象和性質(zhì)進(jìn)行了探究,探究過程如下,請(qǐng)補(bǔ)充完整.

x

﹣3

﹣2

﹣1

-

-

1

2

3

y

-

m

﹣2

-

-

2

(1)自變量x的取值范圍是   ,m=   

(2)根據(jù)(1)中表內(nèi)的數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),畫出函數(shù)圖象的一部分,請(qǐng)你畫出該函數(shù)圖象的另一部分.

(3)請(qǐng)你根據(jù)函數(shù)圖象,寫出兩條該函數(shù)的性質(zhì);

(4)進(jìn)一步探究該函數(shù)的圖象發(fā)現(xiàn):

①方程x+=3有   個(gè)實(shí)數(shù)根;

②若關(guān)于x的方程x+=t有2個(gè)實(shí)數(shù)根,則t的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,OA2,OB4,以A點(diǎn)為頂點(diǎn)、AB為腰在第三象限作等腰RtABC

1)求C點(diǎn)的坐標(biāo);

2)如圖1,在平面內(nèi)是否存在一點(diǎn)H,使得以A、C、B、H為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫出H點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由;

3)如圖1點(diǎn)M1,﹣1)是第四象限內(nèi)的一點(diǎn),在y軸上是否存在一點(diǎn)F,使得|FMFC|的值最大?若存在,請(qǐng)求出F點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料并解決有關(guān)問題:我們知道|x|,現(xiàn)在我們可以用這個(gè)結(jié)論來化簡(jiǎn)含有絕對(duì)值的代數(shù)式,如化簡(jiǎn)代數(shù)式|x+1|+|x2|時(shí),可令x+10x20,分別求得x=﹣1x2(稱﹣1,2分別叫做|x+1||x2|的零點(diǎn)值.)在有理數(shù)范圍內(nèi),零點(diǎn)值x=﹣1x2可將全體有理數(shù)分成不重復(fù)且不遺漏的如下3種情況:

1)當(dāng)x<﹣1時(shí),原式=﹣(x+1)﹣(x2)=﹣2x+1;

2)當(dāng)﹣1≤x≤2時(shí),原式=x+1﹣(x2)=3;

3)當(dāng)x2時(shí),原式=x+1+x22x1

綜上所述,原式=

通過以上閱讀,請(qǐng)你解決以下問題:

1)分別求出|x+2||x4|的零點(diǎn)值;

2)化簡(jiǎn)代數(shù)式|x+2|+|x4|;

3)求方程:|x+2|+|x4|6的整數(shù)解;

4|x+2|+|x4|是否有最小值?如果有,請(qǐng)直接寫出最小值;如果沒有,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家商場(chǎng)平時(shí)以同樣價(jià)格出售相同的商品,春節(jié)期間兩家商場(chǎng)都讓利酬賓,其中甲商場(chǎng)所有商品按8折出售,乙商場(chǎng)對(duì)一次購(gòu)物中超過200元后的價(jià)格部分打7折.

(1)以x(單位:元)表示商品原價(jià),y(單位:元)表示購(gòu)物金額,分別就兩家商場(chǎng)的讓利方式寫出y關(guān)于x的函數(shù)解析式;

(2)在同一直角坐標(biāo)系中畫出(1)中函數(shù)的圖象;

(3)春節(jié)期間如何選擇這兩家商場(chǎng)去購(gòu)物更省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為,點(diǎn)到點(diǎn),點(diǎn)的距離相等,動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為)秒.

1)點(diǎn)表示的數(shù)是

2)點(diǎn)表示的數(shù)是 .(用含有的代數(shù)式表示);

3)求當(dāng)等于多少秒時(shí),點(diǎn)與點(diǎn)之間的距離為個(gè)單位長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案