16.函數(shù)f(x)=log2(4+3x-x2)的單調(diào)遞減區(qū)間是(  )
A.(-∞,$\frac{3}{2}$]B.[$\frac{3}{2}$,+∞)C.(-1,$\frac{3}{2}$]D.[$\frac{3}{2}$,4)

分析 令t=4+3x-x2 >0,求得函數(shù)的定義域?yàn)椋?1,4),且f(x)=log2t,本題即求函數(shù)t在定義域內(nèi)的減區(qū)間,再利用二次函數(shù)的性質(zhì)可得t=4+3x-x2 在定義域內(nèi)的減區(qū)間.

解答 解:對(duì)于函數(shù)f(x)=log2(4+3x-x2),
令t=4+3x-x2 >0,求得-1<x<4,可得函數(shù)的定義域?yàn)椋?1,4),且f(x)=log2t,
本題即求函數(shù)t在定義域內(nèi)的減區(qū)間.
再利用二次函數(shù)的性質(zhì)可得t=4+3x-x2 在定義域內(nèi)的減區(qū)間為[$\frac{3}{2}$,4),
故選:D.

點(diǎn)評(píng) 本題主要考查復(fù)合函數(shù)的單調(diào)性,對(duì)數(shù)函數(shù)、二次函數(shù)的單調(diào)性,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若復(fù)數(shù)2+(a-1)i(a∈R)為實(shí)數(shù),則a的值為( 。
A.1B.2C.-1D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.($\root{3}{x}$-$\frac{1}{\root{3}{x}}$)10的展開式中的有理項(xiàng)且系數(shù)為正數(shù)的項(xiàng)有( 。
A.1項(xiàng)B.2項(xiàng)C.3項(xiàng)D.4項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知點(diǎn)D為等腰直角三角形ABC斜邊AB的中點(diǎn),則下列等式中恒成立的是( 。
A.$\overrightarrow{CD}=\frac{{\overrightarrow{CA}}}{{|\overrightarrow{CA}|}}+\frac{{\overrightarrow{CB}}}{{|\overrightarrow{CB}|}}$B.$\overrightarrow{AC}=\overrightarrow{AC}•\overrightarrow{AB}$C.$\overrightarrow{BC}=\overrightarrow{BC}•\overrightarrow{BA}$D.$(\overrightarrow{CA}+\overrightarrow{CB})•(\overrightarrow{CA}-\overrightarrow{CB})=0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知集合A={x|-2≤x≤2},B={x|a+1<x<2a-3},若A∪B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.解關(guān)于x的不等式:ax2-2ax-1<0,已知常數(shù)a∈R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.用一塊矩形鐵皮作圓臺(tái)形鐵桶的側(cè)面,要求鐵桶的上底半徑是24cm,下底半徑為16cm,母線長(zhǎng)為48cm.
(1)求矩形鐵皮上邊的最小值;
(2)求該鐵桶的容積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)A,B是兩個(gè)非空集合,定義集合A-B={x|x∈A,且x∉B}依據(jù)上述題意規(guī)定,集合A-(A-B)等于( 。
A.A∩BB.A∪BC.AD.B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)z=x+2y,求滿足$\left\{\begin{array}{l}{2x+5y≤20}\\{5x+4y≤25}\\{x≥1}\\{y≥1}\\{x,y∈{N}^{*}}\end{array}\right.$時(shí)z的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案