A. | 4π | B. | 12π | C. | 16π | D. | 36π |
分析 證明AC⊥AB,可得△ABC的外接圓的半徑為$\sqrt{3}$,利用△ABC和△DBC所在平面相互垂直,球心在BC邊的高上,設(shè)球心到平面ABC的距離為h,則h2+3=R2=($\frac{\sqrt{3}}{2}×2\sqrt{3}$-h)2,求出球的半徑,即可求出球O的表面積.
解答 解:∵AB=3,AC=$\sqrt{3}$,BC=2$\sqrt{3}$,
∴AB2+AC2=BC2,
∴AC⊥AB,
∴△ABC的外接圓的半徑為$\sqrt{3}$,
∵△ABC和△DBC所在平面相互垂直,
∴球心在BC邊的高上,
設(shè)球心到平面ABC的距離為h,則h2+3=R2=($\frac{\sqrt{3}}{2}×2\sqrt{3}$-h)2,
∴h=1,R=2,
∴球O的表面積為4πR2=16π.
故選:C.
點(diǎn)評(píng) 本題考查球O的表面積,考查學(xué)生的計(jì)算能力,確定球的半徑是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0) | B. | (0,+∞) | C. | (-∞,-$\frac{1}{2}$] | D. | (-∞,$\frac{1}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com