分析 連結(jié)AC、BD,交于點(diǎn)G,取SC的中點(diǎn)H,連接BH、DH、GH,由已知條件推導(dǎo)出面HBD‖面PMN,再由中位線定理得到SA‖GH,由此能證明SA‖面PMN.
解答 證明:連結(jié)AC、BD,交于點(diǎn)G,取SC的中點(diǎn)H,連接BH、DH、GH,
∵SP:PC=1:2,H是SC中點(diǎn),
∴$\frac{SP}{PH}=\frac{SM}{MB}=\frac{SN}{ND}=2$,
∴PM∥HB,PN∥HD,
∵PM∩PN=P,HB∩HD=H,
PM?平面PMN,PN?平面PMN,HB?平面HBD,HD?平面HBD,
∴平面HBD‖平面PMN
∵四邊形ABCD是正方形∴G是AC的中點(diǎn),∴SA‖GH,
∵SA?平面BDH,GH?平面BDH,
∴SA∥平面BDH,又∵SA?平面PMN,
∴SA‖面PMN.
點(diǎn)評(píng) 本題考查線面平行的證明,將平面進(jìn)行平行轉(zhuǎn)化是解題關(guān)鍵,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a>b>c | B. | c>a>b | C. | b>a>c | D. | b>c>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com