2.如圖,在直三棱柱ABC-A1B1C1中,AB=AC=5,BB1=BC=6,D,E分別是AA1和B1C的中點(diǎn).
(1)求證:DE⊥BC;
(2)求三棱錐E-BCD的體積.

分析 (1)取BC中點(diǎn)F,連結(jié)EF,AF,由直棱柱的結(jié)構(gòu)特征和中位線定理可得四邊形ADEF是平行四邊形,故DE∥AF,由等腰三角形的性質(zhì)可得AF⊥BC,故DE⊥BC;
(2)把△BCE看做棱錐的底面,則DE為棱錐的高,求出棱錐的底面積和高,代入體積公式即可求出.

解答 證明:(1)取BC中點(diǎn)F,連結(jié)EF,AF,則EF△BCB1的中位線,∴EF∥BB1,EF=$\frac{1}{2}$BB1
∵AD∥BB1,AD=$\frac{1}{2}$BB1,∴EF∥AD,EF=AD,∴四邊形ADEF是平行四邊形,∴DE∥AF,
∵AB=AC,F(xiàn)是BC的中點(diǎn),∴AF⊥BC,∴DE⊥BC.
(2)∵BB1⊥平面ABC,AF?平面ABC,∴BB1⊥AF,
又∵AF⊥BC,BC?平面BCC1B1,BB1?平面BCC1B1,BC∩BB1=B,
∴AF⊥平面BCC1B1,∴DE⊥平面BCC1B1,
∵AC=5,BC=6,∴CF=$\frac{1}{2}BC$=3,∴AF=$\sqrt{A{C}^{2}-C{F}^{2}}$=4,∴DE=AF=4
∵BC=BB1=6,∴S△BCE=$\frac{1}{4}B{C}^{2}$=9.
∴三棱錐E-BCD的體積V=$\frac{1}{3}$S△BCE•DE=$\frac{1}{3}×9×4$=12.

點(diǎn)評(píng) 本題考查了線面垂直的性質(zhì)與判定,棱錐的體積計(jì)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知一物體在共點(diǎn)力$\overrightarrow{{F}_{1}}$=$\overrightarrow{a}$lg2+$\overrightarrow$lg2,$\overrightarrow{{F}_{2}}$=$\overrightarrow{a}$lg5+$\overrightarrow$lg2的作用下產(chǎn)生位移$\overrightarrow{s}$=2$\overrightarrow{a}$lg5+$\overrightarrow$.其中$\overrightarrow{a}$,$\overrightarrow$為單位向量,且$\overrightarrow{a}$⊥$\overrightarrow$,則共點(diǎn)力對(duì)物體做的功W為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.某幾何體的三視圖如圖所示,其中俯視圖與側(cè)視圖是半徑均為$\sqrt{2}$的圓,則該幾何體的表面積是( 。
A.14πB.12πC.10πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,已知四邊形ABCD和BCEG均為直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE=$\frac{π}{2}$,平面ABCD丄平面BCEG,BC=CD=CE=2AD=2BG=2.
(Ⅰ)證明:AG∥平面BDE;
(Ⅱ)求由頂點(diǎn)ABCDEG所圍成的幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.2π-$\frac{2}{3}$B.2π-$\frac{4}{3}$C.$\frac{5π}{3}$D.2π-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AB=BC=1,PA⊥平面ABCD,CD⊥PC,PD=2PA.
(1)證明:CD⊥平面PAC;
(2)若E為AD的中點(diǎn),求證:CE∥平面PAB.
(3)求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{2}$=1(a>$\sqrt{2}$)的左右焦點(diǎn)分別為F1,F(xiàn)2,離心率為e,直線l:y=ex+a,P為點(diǎn)F1關(guān)于直線l對(duì)稱(chēng)的點(diǎn),若△PF1F2為等腰三角形,則a的值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)函數(shù)f(x)=$\frac{1+lnx}{x-1}$.
(1)證明:f(x)在(1,+∞)上為減函數(shù);
(2)若x>1時(shí),f(x)>$\frac{m+1}{x}$恒成立,求整數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.用若干塊相同的小正方體搭成一個(gè)幾何體,該幾何幾的三視圖如圖示,則搭成該幾何體需要的小正方體的塊數(shù)是(  )
A.8B.7C.6D.5

查看答案和解析>>

同步練習(xí)冊(cè)答案