分析 根據(jù)題意,得出$\left\{\begin{array}{l}{{a}_{k}{≥a}_{k+1}}\\{{a}_{k}{≥a}_{k-1}}\end{array}\right.$,代人通項(xiàng)公式并化簡(jiǎn),求出符合題意的k的值.
解答 解:數(shù)列{an}的通項(xiàng)公式為an=n(n+4)($\frac{2}{3}$)n,且最大項(xiàng)為ak,
則$\left\{\begin{array}{l}{{a}_{k}{≥a}_{k+1}}\\{{a}_{k}{≥a}_{k-1}}\end{array}\right.$,
即$\left\{\begin{array}{l}{k(k+4{)(\frac{2}{3})}^{k}≥(k+1)(k+5{)(\frac{2}{3})}^{k+1}}\\{k(k+4{)(\frac{2}{3})}^{k}≥(k-1)(k+3{)(\frac{2}{3})}^{k-1}}\end{array}\right.$,
化簡(jiǎn)$\left\{\begin{array}{l}{{k}^{2}≥10}\\{{k}^{2}-2k-9≤0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{k≤-\sqrt{10}或k≥\sqrt{10}}\\{1-\sqrt{10}≤k≤1+\sqrt{10}}\end{array}\right.$,
即$\sqrt{10}$≤k≤1+$\sqrt{10}$;
又k∈N*,
∴k=4.
故答案為:4.
點(diǎn)評(píng) 本題考查了數(shù)列的通項(xiàng)公式與應(yīng)用問(wèn)題,也考查了不等式組的解法與應(yīng)用問(wèn)題,解題的關(guān)鍵是把題目轉(zhuǎn)化為等價(jià)的不等式組,是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 0 | C. | -3 | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{7}{8}$ | B. | -$\frac{7}{8}$ | C. | -$\frac{3}{4}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com