11.如圖,正方體ABCD-A1B1C1D1中,N為CD1中點(diǎn),M為線段BC1上的動(dòng)點(diǎn)(M不與B,C1重合),以下四個(gè)命題:
(1)CD1⊥平面BMN;
(2)MN∥平面AB1D1;
(3)△D1MN的面積與△CMN的面積相等;
(4)三棱錐D-MNC的體積有最大值
其中真命題的個(gè)數(shù)為( 。
A.1B.2C.3D.4

分析 直接利用空間中線線關(guān)系,線面關(guān)系及面面關(guān)系逐一判斷4個(gè)命題得答案.

解答 解:(1)CD1與BM不垂直,所以CD1⊥平面BMN,不正確;
(2)平面BMN∥平面AB1D1,所以MN∥平面AB1D1,正確;
(3)兩個(gè)三角形等底等高,△D1MN的面積與△CMN的面積相等,正確;
(4)M與B重合,三棱錐D-MNC的體積最大,不正確.
故選:B.

點(diǎn)評(píng) 本題考查了命題的真假判斷與應(yīng)用,考查了空間中的線線關(guān)系和線面關(guān)系,考查了學(xué)生的空間想象能力和思維能力,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列命題:
①平行于同一平面的兩直線相互平行;②平行于同一直線的兩平面相互平行;
③垂直于同一平面的兩平面相互平行;④垂直于同一直線的兩平面相互平行;
⑤垂直于同一直線的兩直線相互平行.
其中正確的有( 。
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知f(x)=logax(a>1)的導(dǎo)函數(shù)是f′(x),記A=f′(2),B=f(3)-f(2),C=f′(3),則(  )
A.A>B>CB.A>C>BC.B>A>CD.C>B>A

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=lnx+ax(a∈R)在點(diǎn)(1,f(1))處切線方程為y=2x-1
(I)求a的值
(Ⅱ)若-$\frac{1}{2}$≤k≤2,證明:當(dāng)x>1時(shí),$f(x)>k({1-\frac{3}{x}})+x-1$
(Ⅲ)若k>2且k∈z,$f(x)>k({1-\frac{3}{x}})+x-1$對(duì)任意實(shí)數(shù)x>1恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=x2-alnx(a∈R).
(1)若a=1,求y=f(x)在(1,f(1))處的切線方程;
(2)求f(x)的單凋區(qū)間;
(3)求f(x)在[1,+∞)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=lnx+$\frac{a+e-2}{x}$(a>0).
(1)當(dāng)a=2時(shí),求出函數(shù)f(x)的單調(diào)區(qū)間;
(2)若不等式f(x)≥a對(duì)于x>0的一切值恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知向量$\overrightarrow{a}$=(-2,x,1),$\overrightarrow$=(4,-2,x),若$\overrightarrow{a}$⊥$\overrightarrow$,則實(shí)數(shù)x的值為( 。
A.2B.-2C.8D.-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)f(x)=$\sqrt{x-1}$+lg(6-2x)的定義域是( 。
A.[1,3)B.(1,3)C.[1,3]D.(1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.如圖,在正方體ABCD-A1B1C1D1中,B1D與C1D1所成角的余弦值是( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案