3.已知向量$\overrightarrow{a}$=(-2,x,1),$\overrightarrow$=(4,-2,x),若$\overrightarrow{a}$⊥$\overrightarrow$,則實(shí)數(shù)x的值為( 。
A.2B.-2C.8D.-8

分析 根據(jù)向量$\overrightarrow{a}$⊥$\overrightarrow$,得出$\overrightarrow{a}$•$\overrightarrow$=0,列出方程求出x的值.

解答 解:向量$\overrightarrow{a}$=(-2,x,1),$\overrightarrow$=(4,-2,x),
且$\overrightarrow{a}$⊥$\overrightarrow$,
所以$\overrightarrow{a}$•$\overrightarrow$=-2×4-2x+x=0,
解得x=-8.
故選:D.

點(diǎn)評(píng) 本題考查了兩向量垂直,它們的數(shù)量積等于0的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=ax3+bx(x∈R,a≠0).
(1)若函數(shù)f(x)的圖象在點(diǎn)x=3處的切線與直線24x-y+1=0平行,函數(shù)f(x)在x=1處取得極值,求函數(shù)f(x)的解析式;
(2)若b=-3a,求函數(shù)的單調(diào)遞減區(qū)間;
(3)若a=1,且函數(shù)f(x)在[-1,1]上是減函數(shù),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)f(x)=lnx+2x在(1,f(1))處的切線方程為3x-y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,正方體ABCD-A1B1C1D1中,N為CD1中點(diǎn),M為線段BC1上的動(dòng)點(diǎn)(M不與B,C1重合),以下四個(gè)命題:
(1)CD1⊥平面BMN;
(2)MN∥平面AB1D1
(3)△D1MN的面積與△CMN的面積相等;
(4)三棱錐D-MNC的體積有最大值
其中真命題的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=-1,若x、y∈[-1,1],x+y≠0,則$\frac{f(x)+f(y)}{x+y}$<0
(1)用定義證明,f(x)在[-1,1]上是減函數(shù);
(2)解不等式:f($\frac{1}{x-1}$)<f(x+$\frac{1}{2}$);
(3)若f(x)≥t2-2at-1對(duì)所有x∈[-1,1],a∈[-1,1]均成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某蔬菜基地于2015年4月5日讓一批西紅柿進(jìn)入市場(chǎng)銷售,通過市場(chǎng)調(diào)查,預(yù)測(cè)西紅柿的價(jià)格f(x)(單位:元/kg)與時(shí)間x(x表示距4月5日的天數(shù),單位:天,x∈(0,8])的數(shù)據(jù)如表所示:
時(shí)間x357
價(jià)格f(x)1355
根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個(gè)函數(shù)描述西紅柿價(jià)格f(x)與上市時(shí)間x的變化關(guān)系;f(x)=ax+b,f(x)=ax2+bx+c,f(x)=a•bx,f(x)=a•logbx,其中a≠0,并求出此函數(shù)以及西紅柿價(jià)格的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖是一平行六面體(底面為平行四邊形的四棱柱)ABCD-A1B1C1D1,E為BC延長線上一點(diǎn),$\overrightarrow{BC}=2\overrightarrow{CE}$,則$\overrightarrow{{D_1}E}$=( 。
A.$\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{A{A_1}}$B.$\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AD}-\overrightarrow{A{A_1}}$C.$\overrightarrow{AB}+\overrightarrow{AD}-\overrightarrow{A{A_1}}$D.$\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AD}-\overrightarrow{A{A_1}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知點(diǎn)P是圓C:(x+$\sqrt{3}$)2+y2=16上任意一點(diǎn),A($\sqrt{3}$,0)是圓C內(nèi)一點(diǎn),線段AP的垂直平分線l和半徑CP交于點(diǎn)Q,O為坐標(biāo)原點(diǎn).
(1)當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)Q的軌跡E的方程.
(2)設(shè)過點(diǎn)B(0,-2)的動(dòng)直線與E交于M,N兩點(diǎn),當(dāng)△OMN的面積最大時(shí),求此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{m{x}^{2}+2}{n-3x}$的定義域上的奇函數(shù),且f(2)=-$\frac{5}{3}$,函數(shù)g(x)是R上的增函數(shù),g(1)=1且對(duì)任意x,y∈R,總有g(shù)(x+y)=g(x)+g(y)
(Ⅰ)求函數(shù)f(x)的解析式
(Ⅱ)判斷函數(shù)f(x)在(1,+∞)上的單調(diào)性,并加以證明
(Ⅲ)若g(2a)>g(a-1)+2,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案