分析 (1)求出f(x)的導(dǎo)數(shù),可得切線的斜率和切點(diǎn),由點(diǎn)斜式方程可得切線的方程;
(2)求得導(dǎo)數(shù),求得極值點(diǎn),求出單調(diào)區(qū)間,可得f(x)的最值,解方程可得a=0,進(jìn)而得到最小值.
解答 解:(1)f(x)的導(dǎo)數(shù)為f′(x)=-3x2+6x+9,
可得切線的斜率為f′(2)=9,切點(diǎn)為(2,20),
所以f(x)在x=2處的切線方程為y-20=9(x-2),
即9x-y+2=0.
(2)令f′(x)=-3x2+6x+9=0,得x=3(舍)或x=-1,
當(dāng)x∈(-2,-1)時(shí),f'(x)<0,所以f(x)在x∈(-2,-1)時(shí)單調(diào)遞減,
當(dāng)x∈(-1,2)時(shí)f'(x)>0,所以f(x)在x∈(-1,2)時(shí)單調(diào)遞增,
又f(-2)=2+a,f(2)=22+a,
所以f(2)>f(-2).
因此f(2)和f(-1)分別是f(x)在區(qū)間[-2,2]上的最大值和最小值,
于是有22+a=22,解得a=0.
故f(x)=-x3+3x2+9x,因此f(-1)=-5,
即函數(shù)f(x)在區(qū)間[-2,2]上的最小值為-5.
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的方程和單調(diào)區(qū)間、極值和最值,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=x+1 | B. | y=-3x+1 | C. | y=x-1 | D. | y=3x-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{2}$ | D. | π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com