分析 (1)欲證BC⊥平面PAC,根據(jù)直線與平面垂直的判定定理可知只需證BC與平面PAC內(nèi)兩相交直線垂直,根據(jù)線面垂直的性質(zhì)可知PA⊥BC,而AC⊥BC,滿足定理所需條件;
(2)根據(jù)DE⊥AE,DE⊥PE,由二面角的平面角的定義可知∠AEP為二面角A-DE-P的平面角,而PA⊥AC,則在棱PC上存在一點(diǎn)E,使得AE⊥PC,從而存在點(diǎn)E使得二面角A-DE-P是直二面角.
解答 解:(1)證明:∵PA⊥底面ABC,∴PA⊥BC.
又∠BCA=90°,∴AC⊥BC,又PA∩AC=A∴BC⊥平面PAC.
(2)∵DE∥BC,又由(1)知,BC⊥平面PAC,
∴DE⊥平面PAC.
又∵AE?平面PAC,PE?平面PAC,
∴DE⊥AE,DE⊥PE,
∴∠AEP為二面角A-DE-P的平面角.
∵PA⊥底面ABC,∴PA⊥AC,
∴∠PAC=90°,∴在棱PC上存在一點(diǎn)E,使得AE⊥PC.
這時(shí),∠AEP=90°,
故存在點(diǎn)E使得二面角A-DE-P是直二面角.
點(diǎn)評(píng) 考查線面所成角、線面垂直的判定定理以及二面角的求法,涉及到的知識(shí)點(diǎn)比較多,知識(shí)性技巧性都很強(qiáng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{PC}$和$\overrightarrow{BD}$ | B. | $\overrightarrow{DA}$和$\overrightarrow{PB}$ | C. | $\overrightarrow{PD}$與$\overrightarrow{AB}$ | D. | $\overrightarrow{PC}$與$\overrightarrow{AD}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-4] | B. | (-$\frac{1}{2}$,+∞) | C. | (-∞,-$\frac{9}{8}$) | D. | (-∞,$\frac{10}{7}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
分?jǐn)?shù)段(分) | [50,70) | [70,90) | [90,110) | [110,130) | [130,150) | 總計(jì) |
頻數(shù) | 20 | 40 | 70 | 50 | 20 | 200 |
女生 | 男生 | 總計(jì) | |
及格人數(shù) | 60 | ||
不及格人數(shù) | |||
總計(jì) |
P(K2≥k0) | 0.10 | 0.050 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com