19.已知向量$\overrightarrow{a}$=($\frac{1}{2}$,k),$\overrightarrow$=(k-1,4),若$\overrightarrow{a}$⊥$\overrightarrow$,則實數(shù)k的值為( 。
A.$\frac{1}{9}$B.$\frac{2}{9}$C.-$\frac{1}{7}$D.2

分析 由題意可得$\overrightarrow{a}$•$\overrightarrow$=$\frac{1}{2}$(k-1)+4k=0,解方程可得.

解答 解:∵向量$\overrightarrow{a}$=($\frac{1}{2}$,k),$\overrightarrow$=(k-1,4),且$\overrightarrow{a}$⊥$\overrightarrow$,
∴$\overrightarrow{a}$•$\overrightarrow$=$\frac{1}{2}$(k-1)+4k=0,解得k=$\frac{1}{9}$,
故選:A.

點評 本題考查平面向量的數(shù)量積和垂直關系,屬基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

7.請寫一個圓心落在第二象限,并經過坐標原點的圓的標準方程為(x+2)2+(y-3)2=13.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}+2x,(x≥0)\\-{x^2}+2x,(x<0)\end{array}\right.$,若f(a)+f(a2-2)<0,則實數(shù)a的取值范圍是( 。
A.(-∞,-1)∪(2,+∞)B.(-1,2)C.(-2,1)D.(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.設函數(shù)f(x)=lg(x2-2x-3)的定義域為集合A,函數(shù)$g(x)=\sqrt{2-|x|}$的定義域為集合B,定義集合A-B={x|x∈A且x∉B}.
(1)求A-B;
(2)若C={x|m-1<x<2m+1},C⊆B,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.在直角坐標系xOy中,已知點P是反比例函數(shù)y=$\frac{2\sqrt{3}}{x}$(x>0)圖象上一個動點,以P為圓心的圓始終與y軸相切,設切點為A.
(1)如圖1,⊙P運動到與x軸相切,設切點為K,判斷四邊形OKPA的形狀,并說明理由.
(2)如圖2,⊙P運動到與x軸相交,設交點為B,C.當四邊形ABCP是菱形時:
①求出點A,B,C的坐標.
②在過A,B,C三點的拋物線上是否存在點M,使△MBP的面積是菱形ABCP面積的$\frac{1}{2}$?若存在,試求出所有滿足條件的M點的坐標;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知直線x+my+6=0和(m-2)x+3y+2m=0互相平行,則實數(shù)m的取值為( 。
A.-1或3B.-1C.-3D.1或-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知集合A={x|2x>1},B={ x|x<1},則A∩B?(  )
A.{ x|0<x<1}B.{ x|x>?0}C.{ x|x>1}D.{x|x<1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設$\overrightarrow{e_1}$,$\overrightarrow{e_2}$,$\overrightarrow{e_3}$為單位向量,且$\overrightarrow{e_3}=\frac{1}{2}\overrightarrow{e_1}+k\overrightarrow{e_2}$,(k>0),若以向量$\overrightarrow{e_1}$,$\overrightarrow{e_2}$為兩邊的三角形的面積為$\frac{1}{2}$,則k的值為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{5}}}{2}$D.$\frac{{\sqrt{7}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.四棱錐P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=3,AB=2,BC=$\sqrt{3}$,求P到BD的距離.

查看答案和解析>>

同步練習冊答案