8.設(shè)$\overrightarrow{e_1}$,$\overrightarrow{e_2}$,$\overrightarrow{e_3}$為單位向量,且$\overrightarrow{e_3}=\frac{1}{2}\overrightarrow{e_1}+k\overrightarrow{e_2}$,(k>0),若以向量$\overrightarrow{e_1}$,$\overrightarrow{e_2}$為兩邊的三角形的面積為$\frac{1}{2}$,則k的值為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{5}}}{2}$D.$\frac{{\sqrt{7}}}{2}$

分析 由以向量$\overrightarrow{e_1}$,$\overrightarrow{e_2}$為兩邊的三角形的面積為$\frac{1}{2}$,結(jié)合三角形的面積公式可得$sin<\overrightarrow{e_1},\overrightarrow{e_2}>=1$,故$\overrightarrow{e_1}⊥\overrightarrow{e_2}$,把$\overrightarrow{e_3}=\frac{1}{2}\overrightarrow{e_1}+k\overrightarrow{e_2}$兩邊平方后即可求得k的值.

解答 解:∵以向量$\overrightarrow{e_1}$,$\overrightarrow{e_2}$為兩邊的三角形的面積為$\frac{1}{2}$,
∴$\frac{1}{2}×1×1×sin<\overrightarrow{e_1},\overrightarrow{e_2}>=\frac{1}{2}$,則$sin<\overrightarrow{e_1},\overrightarrow{e_2}>=1$,故$\overrightarrow{e_1}⊥\overrightarrow{e_2}$,
又$\overrightarrow{e_3}=\frac{1}{2}\overrightarrow{e_1}+k\overrightarrow{e_2}$,(k>0),
∴${|{\overrightarrow{e_3}}|^2}={|{\frac{1}{2}\overrightarrow{e_1}+k\overrightarrow{e_2}}|^2}=\frac{1}{4}+{k^2}=1$,
解得:$k=\frac{{\sqrt{3}}}{2}$.
故選:B.

點(diǎn)評(píng) 本題考查平面向量數(shù)量積運(yùn)算,考查了利用正弦定理求三角形的面積公式,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知向量$\overrightarrow{a}$=(x-1,x+1),$\overrightarrow$=(-2,1),若$\overrightarrow{a}$∥$\overrightarrow$,則實(shí)數(shù)x=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知向量$\overrightarrow{a}$=($\frac{1}{2}$,k),$\overrightarrow$=(k-1,4),若$\overrightarrow{a}$⊥$\overrightarrow$,則實(shí)數(shù)k的值為( 。
A.$\frac{1}{9}$B.$\frac{2}{9}$C.-$\frac{1}{7}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.“2x>2”是“l(fā)gx>-1”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.對(duì)于函數(shù)f(x),若存在區(qū)間A=[m,n],使得{y|y=f(x),x∈A}=A,則稱函數(shù)f(x)為“可等域函數(shù)”,區(qū)間A為函數(shù)f(x)的一個(gè)“可等域區(qū)間”,給出下列四個(gè)函數(shù):
①f(x)=sin($\frac{π}{2}$x)
②f(x)=|2x-1|
③f(x)=2x2-1
④f(x)=log2(2x-2).
其中存在唯一“可等域區(qū)間”的“可等域函數(shù)”的序號(hào)為②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.等比數(shù)列{an}的公比為2,且a3a11=16,則a5=(  )
A.1B.-1C.±1D.±2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.李華經(jīng)營了兩家電動(dòng)轎車銷售連鎖店,其月利潤(單位:元)分別為L1=-5x2+900x-10000,L2=300x-1000(其中x為銷售輛數(shù)),若某月兩連鎖店共銷售了110輛,則能獲得的最大利潤為( 。
A.11000B.22000C.33000D.40000

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}y≥1\\ y≤2x-1\\ x+y≤m\end{array}\right.$,如果目標(biāo)函數(shù)z=3x-2y的最小值為-1,則實(shí)數(shù)m等于8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某蔬菜基地種植西紅柿,由歷年市場(chǎng)行情得知,從二月一日起的300天內(nèi),西紅柿市場(chǎng)售價(jià)與上市時(shí)間的關(guān)系用圖1所示的一條折線表示,西紅柿的種植成本與上市時(shí)間的關(guān)系用圖2所示的拋物線表示.(注:市場(chǎng)售價(jià)和種植成本的單位:元/kg,時(shí)間單位:天)

(1)寫出圖1表示的市場(chǎng)售價(jià)與時(shí)間的函數(shù)關(guān)系式P=f(t);寫出圖2表示的種植成本與時(shí)間的函數(shù)關(guān)系式Q=g(t);
(2)認(rèn)定市場(chǎng)售價(jià)減去種植成本為純收益,問何時(shí)上市的西紅柿純收益最大?為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案