13.已知直線l的參數(shù)方程為:$\left\{\begin{array}{l}{x=cos90°+tcos60°}\\{y=cos45°+tcos30°}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C極坐標(biāo)方程為:ρ=-2cos(θ+$\frac{3π}{4}$),設(shè)直線l與曲線C的交點(diǎn)為A,B兩點(diǎn).
(1)將直線l化成直角坐標(biāo)方程,寫成斜截式,并求出直線l的傾斜角;
(2)若曲線C上存在異于A,B的點(diǎn)C,使得△ABC的面積最大,求出面積最大值.

分析 (1)用x,y表示出參數(shù)t,列出方程整理即可;
(2)求出曲線C的普通方程,利用垂徑定理求出AB,和AB邊上高的最大值.

解答 解:(1)由x=cos90°+tcos60°=$\frac{1}{2}t$得t=2x,由y=cos45°+tcos30°=$\frac{\sqrt{2}}{2}$+$\frac{\sqrt{3}}{2}$t得t=$\frac{2\sqrt{3}}{3}$y-$\frac{\sqrt{6}}{3}$,
∴直線l的直角坐標(biāo)方程為2x=$\frac{2\sqrt{3}}{3}$y-$\frac{\sqrt{6}}{3}$,即6x-2$\sqrt{3}$y+$\sqrt{6}$=0.化成斜截式方程為y=$\sqrt{3}$x+$\frac{\sqrt{2}}{2}$.
直線l的斜率為$\sqrt{3}$,∴直線l的傾斜角為60°.
(2)∵曲線C極坐標(biāo)方程為:ρ=-2cos(θ+$\frac{3π}{4}$)=$\sqrt{2}$cosθ+$\sqrt{2}$sinθ,∴ρ2=$\sqrt{2}ρ$cosθ+$\sqrt{2}$ρsinθ,
∴曲線C的直角坐標(biāo)方程為x2+y2=$\sqrt{2}$x+$\sqrt{2}$y,即(x-$\frac{\sqrt{2}}{2}$)2+(y-$\frac{\sqrt{2}}{2}$)2=1.
∴曲線C表示以($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$)為圓心,以r=1為半徑的圓.
圓心到直線l的距離d=$\frac{3\sqrt{2}}{\sqrt{36+12}}$=$\frac{\sqrt{6}}{4}$,∴AB=2$\sqrt{{r}^{2}-aeuiwcf^{2}}$=$\frac{\sqrt{10}}{2}$.
∴△ABC的面積最大值為$\frac{1}{2}$AB×(d+r)=$\frac{1}{2}×\frac{\sqrt{10}}{2}×(1+\frac{\sqrt{6}}{4})$=$\frac{2\sqrt{10}+\sqrt{15}}{8}$.

點(diǎn)評(píng) 本題考查了參數(shù)方程,極坐標(biāo)方程與直角坐標(biāo)方程的轉(zhuǎn)化,直線與與圓的位置關(guān)系,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知平面α⊥平面β,α∩β=l,在l上有兩點(diǎn)AB,線段AC?α,線段BD?β,并且AC⊥l,BD⊥l,AB=6,AC=8,BD=24,求CD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在三棱錐P-ABCD中,底面ABC為直角三角形,AB=BC,PA⊥平面ABC.
(1)證明:BC⊥PB;
(2)若D為AC的中點(diǎn),且PA=2AB=4,求點(diǎn)D到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知三棱錐O-ABC的頂點(diǎn)A,B,C都在半徑為2的球面上,O是球心,∠AOB=60°,當(dāng)△AOC和△BOC的面積之和最大時(shí),則O到面ABC的距離為(  )
A.$\frac{{\sqrt{7}}}{7}$B.$\frac{{2\sqrt{7}}}{7}$C.$\frac{{\sqrt{21}}}{7}$D.$\frac{{2\sqrt{21}}}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,已知矩形ABCD中,AB=10,BC=6,將矩形沿對(duì)角線BD把△ABD折起,使A移到A1點(diǎn),且A1在平面BCD上的射影O恰在CD上,即A1O⊥平面DBC.
(Ⅰ)求證:BC⊥A1D;
(Ⅱ)求證:平面A1BC⊥平面A1BD;
(Ⅲ)求點(diǎn)C到平面A1BD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.焦點(diǎn)在x軸上的橢圓$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{6-m}$=1與y=kx+1恒有公共點(diǎn),則m可取的一個(gè)值是( 。
A.6B.5C.$\frac{5}{3}$D.-$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知在平面直角坐標(biāo)系xOy中,橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,左頂點(diǎn)為A(-3,0),圓心在原點(diǎn)的圓O與橢圓的內(nèi)接三角形△AEF的三條邊都相切.
(1)求橢圓方程;
(2)求圓O方程;
(3)B為橢圓的上頂點(diǎn),過B作圓O的兩條切線,分別交橢圓于M,N兩點(diǎn),試判斷并證明直線MN與圓O的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,底面為正方形且各側(cè)棱長(zhǎng)均相等的四棱錐V-ABCD可繞著棱AB任意旋轉(zhuǎn),若AB?平面α,M、N分別是AB、CD的中點(diǎn),AB=2,VA=$\sqrt{5}$,點(diǎn)V在平面α上的射影為點(diǎn)O,則當(dāng)ON的最大時(shí),二面角C-AB-O的大小是( 。
A.90°B.105°C.120°D.135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若方程$\frac{x^2}{a+2}$+$\frac{y^2}{a^2}$=1表示焦點(diǎn)在y軸上的橢圓,則實(shí)數(shù)a的取值范圍是(2,+∞)∪(-2,-1).

查看答案和解析>>

同步練習(xí)冊(cè)答案