18.函數(shù)f(x)=$\left\{\begin{array}{l}{|lnx-2|,}&{x>0}\\{-{x}^{2}-2x+3,}&{x≤0}\end{array}\right.$,直線y=m與函數(shù)f(x)的圖象交于四個(gè)不同的點(diǎn),交點(diǎn)橫坐標(biāo)從小到大依次記為a,b,c,d,下列說法正確的是②③.(請寫出所有正確答案的序號)
①m∈(3,4);
②abcd∈[0,e4);
③a+b+c+d∈[e5+$\frac{1}{e}$-2,e6+$\frac{1}{{e}^{2}}$-2);
④若關(guān)于x的方程f(x)+x=t恰有三個(gè)不同實(shí)根,則t=3.

分析 ①畫出y=f(x)與y=m的圖象即可;
②,結(jié)合圖象把a(bǔ)bcd的不等式用m表示出來;
③同樣用m把a(bǔ)+b+c+d表示出來;
④若關(guān)于x的方程f(x)+x=t恰有三個(gè)不同實(shí)根,則y=f(x)與y=-x+t有三個(gè)不同的交點(diǎn),畫圖即可.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}-2x+3,x≤0}\\{|2-lnx|,x>0}\end{array}\right.$,即f(x)=$\left\{\begin{array}{l}{-(x+1)^{2}+4,x≤0}\\{|2-lnx|,x>0}\end{array}\right.$,
∴函數(shù)f(x)的圖象如下:
若直線y=m與函數(shù)f(x)的圖象相交于四個(gè)不同的點(diǎn),由圖可知m∈[3,4),故①錯(cuò)誤;
四個(gè)交點(diǎn)橫坐標(biāo)從小到大,依次記為a,b,c,d,則a,b關(guān)于x=-1對稱,
∴a+b=-2,ab=m-3,∴ab∈[0,1),且lnc=2-m,lnd=2+m,
∴l(xiāng)n(cd)=4,
∴cd=e4,
∴abcd∈[0,e4),∴②是正確的;
由2-lnx=4得x=$\frac{1}{{e}^{2}}$,由2-lnx=3得x=$\frac{1}{e}$,
∴c∈($\frac{1}{{e}^{2}}$,$\frac{1}{e}$],又∵cd=e4,
∴a+b+c+d=c+$\frac{{e}^{4}}{c}$-2在($\frac{1}{{e}^{2}}$,$\frac{1}{e}$]是遞減函數(shù),∴a+b+c+d∈[e5+$\frac{1}{e}$-2,e6+$\frac{1}{{e}^{2}}$-2); 
∴③是正確的;
④若關(guān)于x的方程f(x)+x=t恰有三個(gè)不同實(shí)根,則y=f(x)與y=-x+t有三個(gè)不同的交點(diǎn),
而直線y=-x+3 與y=-x+$\frac{13}{4}$均與y=f(x)有三個(gè)交點(diǎn),∴t不唯一.∴故④錯(cuò)誤,
故正確的是②③,
故答案為:②③

點(diǎn)評 本題主要考查與函數(shù)有關(guān)的命題的真假判斷,利用數(shù)形結(jié)合以及分段函數(shù)的性質(zhì)是解決本題的關(guān)鍵.綜合性較強(qiáng),難度較大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.一個(gè)幾何體的三視圖及其尺寸(單位:cm)如圖所示.
(1)畫出該幾何體的直觀圖;
(2)求該幾何體的體積與表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$,x∈R)的部分圖象如圖:
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若將函數(shù)f(x)圖象上的所有點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)縮小到原來的$\frac{1}{4}$倍,再沿x軸向左平移$\frac{π}{4}$個(gè)單位長度,得到函數(shù)g(x)的圖象,求函數(shù)g(x)在[-$\frac{π}{4}$,$\frac{π}{6}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)復(fù)數(shù)z=2+i,則復(fù)數(shù)z(1-z)的共軛復(fù)數(shù)為( 。
A.-1-3iB.-1+3iC.1+3iD.1-3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.等差數(shù)列{an}中,a5、a7是函數(shù)f(x)=x2-4x+3的兩個(gè)零點(diǎn),則a3+a9等于( 。
A.-4B.-3C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)全集U=R,集合A={x|-4<x<1},B={x|4${\;}^{x+\frac{1}{2}}$>$\frac{1}{8}$},則圖中陰影部分所表示的集合為( 。
A.(-2,1]B.(1,+∞)C.(-∞,-4]D.(-∞,-4]∪(-2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10. 某社區(qū)為調(diào)查當(dāng)前居民的睡眠狀況,從該社區(qū)的[10,70]歲的人群中隨機(jī)抽取n人進(jìn)行一次日平均睡眠時(shí)間調(diào)查,這n人中各年齡組人數(shù)的頻率分布直方圖如圖1所示,統(tǒng)計(jì)各年齡組的“亞健康族”(日平均睡眠時(shí)間符合健康標(biāo)準(zhǔn)的稱為“健康族”否則稱為“亞健康族”)人數(shù)及相應(yīng)頻率,得到統(tǒng)計(jì)表如圖所示
組數(shù)分組亞健康族的人數(shù)占本組的頻率
第一組[10,20)1000.5
第二組[20,30)195P
第三組[30,40)1200.6
第四組[40,50)a0.4
第五組[50,60)300.3
第六組[60,70]150.3
(1)求n、p的值;
(2)用分層抽樣的方法從年齡在[30,50)歲的“亞健康族”中抽取6人參加健康睡眠體驗(yàn)活動(dòng),現(xiàn)從6人中隨機(jī)選取2人擔(dān)任領(lǐng)隊(duì),記年齡在[40,50)歲的領(lǐng)隊(duì)有X人,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.曲線y=$\sqrt{x}$在[0,1]上圍繞x軸旋轉(zhuǎn)一周,形成的幾何體體積為( 。
A.$\frac{π}{2}$B.$\frac{1}{2}$C.$\frac{2π}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F,右頂點(diǎn)為A,上頂點(diǎn)為B,已知|AB|=$\sqrt{3}$|OF|,且△A0B的面積為$\sqrt{2}$.
(1)求橢圓的方程;
(2)直線y=2上是否存在點(diǎn)M,便得從該點(diǎn)向橢圓所引的兩條切線相互垂直?若存在,求點(diǎn)M的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案