16.設(shè)集合A={x|x2-x-2<0},B={x|-1<x<1},則(  )
A.A?BB.B⊆AC.A=BD.A∩B=∅

分析 分別求出A與B中不等式的解集,確定出A與B,即可得出結(jié)論.

解答 解:集合A中的不等式變形得:(x-2)(x+1)<0,
解得:-1<x<2,即A={x|-1<x<2},
∵B={x|-1<x<1},
∴B⊆A.
故選:B.

點(diǎn)評(píng) 此題考查了集合的關(guān)系,正確求出A是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.過(guò)點(diǎn)(2,-2)且以$y=±\frac{{\sqrt{2}}}{2}x$為漸近線的雙曲線方程是( 。
A.$\frac{y^2}{2}-\frac{x^2}{4}=1$B.$\frac{x^2}{4}-\frac{y^2}{2}=1$C.$\frac{y^2}{4}-\frac{x^2}{2}=1$D.$\frac{x^2}{2}-\frac{y^2}{4}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知圓(x-2)2+y2=4,則過(guò)拋物線y2=4x的焦點(diǎn)的直線與已知圓相交的最短弦長(zhǎng)等于$2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知平面上三點(diǎn)A,B,C,$\overrightarrow{BC}$=(2-k,3),$\overrightarrow{AC}$=(2,4).
(1)若三點(diǎn)A,B,C不能構(gòu)成三角形,求實(shí)數(shù)k應(yīng)滿足的條件;
(2)若△ABC中角A為直角,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,在直棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=AA1=1,延長(zhǎng)AC至D,使AC=CD,連接BD,B1D,C1D
(1)求證:AC1⊥B1D;
(2)求六面體BB1-A1ADC1的體積;
(3)求平面B1C1D與平面ABC所成銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在直三棱柱ABC-A1B1C1中,AC=2,CB=CC1=4,∠BCA=90°,E、F、M、N分別是A1B1、AB、C1B1、CB的中點(diǎn),建立如圖所示的坐標(biāo)系.
(1)在平面ABB1A1內(nèi)找一點(diǎn)P,使△ABP為正三角形;
(2)能否在MN上求得點(diǎn)Q,使△AQB為以AB為斜邊的直角三角形?若能,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{\sqrt{3}}{2}$sin2x-cos2x-$\frac{1}{2}$(x∈R),設(shè)△ABC的內(nèi)角A,B,C對(duì)應(yīng)邊分別為a,b,c,且c=$\sqrt{3}$,f(C)=0.
(1)求C的值.
(2)若向量$\overrightarrow{m}$=(1,sinA)與向量$\overrightarrow{n}$=(2,sinB)共線,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.命題p:實(shí)數(shù)x滿足a<x<3a,其中a>0;q:實(shí)數(shù)x滿足2<x≤3.
(Ⅰ)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(Ⅱ)若q是p的充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,由圓O外一點(diǎn)A引圓的切線AB和割線ADE,B為切點(diǎn),DE為圓O的直徑,且AD=DB.延長(zhǎng)AB至C使得CE與圓O相切,連結(jié)CD交圓O于點(diǎn)F.
(Ⅰ)求$\frac{DE}{CE}$.
(Ⅱ)若圓O的半徑為1,求CF.

查看答案和解析>>

同步練習(xí)冊(cè)答案