分析 利用正三棱錐的性質(zhì)和二面角的定義、等邊三角形的性質(zhì)即可求出.
解答 解:如圖所示,取BC的中點(diǎn)D,連結(jié)AD,SD,過點(diǎn)S作SO⊥底面ABC,
△ABC,△SBC都是等邊三角形,可得AD⊥BC,SD⊥BC.
∴∠ADS為側(cè)面SBC與底面ABC所成的二面角的平面角.
BC=1,SA=$\frac{\sqrt{3}}{2}$,SD=AD=$\frac{\sqrt{3}}{2}$,△SDA是正三角形.
∴∠ADS=60°.
二面角S-BC-A的大小為60°.
故答案為:60°.
點(diǎn)評 熟練掌握正三棱錐的性質(zhì)和二面角的定義、等邊三角形的性質(zhì)是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | 2 | C. | 0 | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$或-$\sqrt{3}$ | B. | $\sqrt{3}$或3$\sqrt{3}$ | C. | $\sqrt{3}$或5$\sqrt{3}$ | D. | 3$\sqrt{3}$或5$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$; | C. | $\frac{4π}{3}$ | D. | $\frac{8π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3x-y-5=0 | B. | 3x-y+5=0 | C. | x+3y+13=0 | D. | x+3y-35=0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com