分析 由題意可知,對任意x∈R,恒有mx2-2x+1>0成立,當(dāng)m=0時,不合題意;當(dāng)m≠0時,需$\left\{\begin{array}{l}{m>0}\\{(-2)^{2}-4m<0}\end{array}\right.$,求解不等式組得答案.
解答 解:∵函數(shù)y=lg(mx2-2x+1)的定義域是R,
∴對任意x∈R,恒有mx2-2x+1>0成立,
當(dāng)m=0時,不合題意;
∴$\left\{\begin{array}{l}{m>0}\\{(-2)^{2}-4m<0}\end{array}\right.$,解得:m>1.
∴實數(shù)m的取值范圍是(1,+∞).
點評 本題考查函數(shù)的定義域及其求法,考查了分類討論的數(shù)學(xué)思想方法和數(shù)學(xué)轉(zhuǎn)化思想方法,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分但非必要條件 | B. | 必要但非充分條件 | ||
C. | 充分必要條件 | D. | 既非充分又非必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x=-$\frac{π}{12}$ | B. | x=0 | C. | x=$\frac{π}{6}$ | D. | x=$\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com