分析 由已知EH$\underset{∥}{=}$$\frac{1}{2}BD$$\underset{∥}{=}$FG,EF$\underset{∥}{=}$$\frac{1}{2}$AC$\underset{∥}{=}$HG,從而四邊形EFGH為平行四邊形,由四邊形EFGH為菱形,得EF=EH,由此得到AC=BD.
解答 解:在三棱錐A-BCD中,
∵E,F(xiàn),G,H分別是棱AB,BC,CD,DA的中點,
∴EH$\underset{∥}{=}$$\frac{1}{2}BD$,F(xiàn)G$\underset{∥}{=}$$\frac{1}{2}$BD,∴EH$\underset{∥}{=}$FG,
EF$\underset{∥}{=}$$\frac{1}{2}$AC,HG$\underset{∥}{=}$$\frac{1}{2}$AC,∴EF$\underset{∥}{=}$HG,
∴四邊形EFGH為平行四邊形,
∵四邊形EFGH為菱形,∴EF=EH,∴AC=BD,
∴當(dāng)AC,BD滿足條件AC=BD時,四邊形EFGH為菱形.
故答案為:AC=BD.
點評 本題考查四邊形為菱形時需要具備條件的求法,是基礎(chǔ)題,解題時要認真審題,注意三角形中位線定理和平行公理的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 20 | B. | 21 | C. | 24 | D. | 25 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ¬q | B. | (¬p)∨(¬q) | C. | p∧q | D. | p∧(¬q) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0) | B. | (0,1] | C. | (-∞,1] | D. | [0,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 9 | C. | π2 | D. | π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com