A. | $\frac{{\sqrt{2}}}{10}$ | B. | $-\frac{{\sqrt{2}}}{10}$ | C. | $\frac{{7\sqrt{2}}}{10}$ | D. | $-\frac{{7\sqrt{2}}}{10}$ |
分析 根據同角的三角形關系求出sin(α+$\frac{π}{4}$)=$\frac{4}{5}$,再根據cosα=cos(α+$\frac{π}{4}$-$\frac{π}{4}$),利用兩角差的余弦公式計算即可.
解答 解:∵α∈(0,π),
∴α+$\frac{π}{4}$∈($\frac{π}{4}$,$\frac{5π}{4}$),
∵$cos({\frac{π}{4}+α})=\frac{3}{5}$,
∴sin(α+$\frac{π}{4}$)=$\frac{4}{5}$,
∴cosα=cos(α+$\frac{π}{4}$-$\frac{π}{4}$)=cos(α+$\frac{π}{4}$)cos$\frac{π}{4}$+sin(α+$\frac{π}{4}$)sin$\frac{π}{4}$=$\frac{3}{5}$×$\frac{\sqrt{2}}{2}$+$\frac{4}{5}$×$\frac{\sqrt{2}}{2}$=$\frac{7\sqrt{2}}{10}$,
故選:C.
點評 本題考查了同角的三角函數(shù)的關系以及兩角差的余弦公式,培養(yǎng)了學生的轉化能力和計算能力,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-1,4) | B. | (-1,1) | C. | (-2,4) | D. | [-1,1] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 有最小值f(a) | B. | 有最大值f(a) | C. | 有最大值$f(\frac{a+b}{2})$ | D. | 有最小值$f(\frac{a+b}{2})$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a<c<b<d | B. | a<d<c<b | C. | a<b<c<d | D. | a<c<d<b |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com