14.一個總體中有60個個體,隨機編號為0,1,2,…59,依編號順序平均分成6個小組,組號為1,2,3,…6.現(xiàn)用系統(tǒng)抽樣方法抽取一個容量為6的樣本,若在第1組中抽取的號碼為3,則在第5組中抽取的號碼是43.

分析 由總體容量及組數(shù)求出間隔號,然后用3加上40即可.

解答 解:總體為60個個體,依編號順序平均分成6個小組,則間隔號為$\frac{60}{6}$=10,
所以在第5組中抽取的號碼為3+10×4=43.
故答案為:43.

點評 本題考查了系統(tǒng)抽樣,系統(tǒng)抽樣是根據(jù)分組情況求出間隔號,然后采用簡單的隨機抽樣在第一組隨機抽取一個個體,其它的只要用第一組抽到的號碼依次加上間隔號即可.此題為基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知兩條直線l1:ax-by+4=0;l2:(a-1)x+y+b=0.
(1)若a=2,且l1∥l2,求b的值.
(2)若直線l1過點(-3,-1),且l1⊥l2,求直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.解關(guān)于x的不等式3x2+ax-a2<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.為迎接2022年北京冬奧會,推廣滑雪運動,某滑雪場開展滑雪促銷活動,該滑雪場的收費標準是:滑雪時間不超過1小時免費,超過1小時的部分每小時收費標準為40元(不足1小時的部分按1小時計算).有甲、乙兩人相互獨立地來該滑雪場運動,設甲、乙不超過1小時離開的概率分別為$\frac{1}{4}$,$\frac{1}{6}$;1小時以上且不超過2小時離開的概率分別為$\frac{1}{2}$,$\frac{2}{3}$;兩人滑雪時間都不會超過3小時.
(Ⅰ)求甲、乙兩人所付滑雪費用相同的概率;
(Ⅱ)設甲、乙兩人所付的滑雪費用之和為隨機變量ξ.求ξ的分布列與數(shù)學期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.求定積分${∫}_{0}^{1}$($\sqrt{1-(x-1)^{2}}$-x)dx的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.指出函數(shù)y=f(a-x)與y=f(x-b)(a,b為常數(shù))的對稱性,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.sin2016°的值屬于區(qū)間(  )
A.(-$\frac{1}{2}$,0)B.(-1,-$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(0,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知∠A+∠B=120°.
(1)將函數(shù)y=sin2A+sin2B化為y=Asin(wx+φ)的形式;
(2)求函數(shù)y的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知|$\overrightarrow{a}$|=|$\overrightarrow$|=|$\overrightarrow{c}$|=1,<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{π}{3}$,<$\overrightarrow$,$\overrightarrow{c}$>=$\frac{π}{2}$,<$\overrightarrow{c}$,$\overrightarrow{a}$>=$\frac{π}{4}$化簡($\overrightarrow{a}$+2$\overrightarrow$-2$\overrightarrow{c}$)•(-3$\overrightarrow{a}$+2$\overrightarrow$+$\overrightarrow{c}$).

查看答案和解析>>

同步練習冊答案