選修4-1 | 選修4-4 | 選修4-5 | |
甲班 | 15 | x | 10 |
乙班 | 10 | 25 | y |
分析 (1)由已知得$\frac{x+25}{110}$=$\frac{6}{11}$,由此能求出x,y及兩個班沒選選修4-5的概率.
(2)由題意學(xué)生選做4-1的概率p=$\frac{15+10}{110}$=$\frac{5}{22}$,X~B(3,$\frac{5}{22}$),由此能求出X的分布列和EX.
解答 解:(1)∵從110名學(xué)生中隨機抽取一名,他選擇選修4-4的概率為$\frac{6}{11}$,
∴$\frac{x+25}{110}$=$\frac{6}{11}$,解得x=60-25=35,
∴y=110-15-10-35-25-10=15.
∴兩個班沒選選修4-5的概率p=1-$\frac{10+15}{110}$=$\frac{17}{22}$.
(2)由題意學(xué)生選做4-1的概率p=$\frac{15+10}{110}$=$\frac{5}{22}$,
由題意知X的可能取值為0,1,2,3,且X~B(3,$\frac{5}{22}$),
P(X=0)=${C}_{3}^{0}(\frac{17}{22})^{3}$=$\frac{4913}{10648}$,
P(X=1)=${C}_{3}^{1}(\frac{5}{22})(\frac{17}{22})^{2}$=$\frac{4335}{10648}$,
P(X=2)=${C}_{3}^{2}(\frac{5}{22})^{2}(\frac{17}{22})$=$\frac{1275}{10648}$,
P(X=3)=${C}_{3}^{3}(\frac{5}{22})^{3}$=$\frac{125}{10648}$,
∴X的分布列為:
X | 0 | 1 | 2 | 3 |
P | $\frac{4913}{10648}$ | $\frac{4335}{10648}$ | $\frac{1275}{10648}$ | $\frac{125}{10648}$ |
點評 本題考查概率的求法,考查離散型隨機變量的分布列和數(shù)學(xué)期望的求法,解題時要認真審題,注意二項分布的性質(zhì)的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{15}{8}$,+∞) | B. | [3,+∞) | C. | [$\frac{9}{4}$,+∞) | D. | ($\sqrt{5}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{1}{2}$,+∞) | B. | [$\frac{2}{3}$,+∞) | C. | (1,+∞) | D. | [1,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com