4.已知集合A={x|-1<x<5},B={x|-2≤x<0}求A∪B={x|-2≤x<5}.

分析 由A與B,求出兩集合的并集即可.

解答 解:集合A={x|-1<x<5},B={x|-2≤x<0},
∴A∪B={x|-1<x<5}∪{x|-2≤x<0}={x|-2≤x<5},
故答案為:{x|-2≤x<5},

點(diǎn)評(píng) 本題考查了并集及其運(yùn)算,熟練掌握并集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知a=2${\;}^{-\frac{1}{3}}$,b=log2$\frac{1}{3}$,c=log${\;}_{\frac{1}{2}}$$\frac{1}{3}$,則a,b,c的大小關(guān)系為( 。
A.b<a<cB.c<a<bC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知不等式x2-5x+4≤0成立的充分不必要條件是-1≤x+2m≤1,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列函數(shù)既是奇函數(shù)又是(0,1)上的增函數(shù)的是(  )
A.y=-xB.y=x2C.y=sinxD.y=cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)函數(shù)f(x)=cos(2x-$\frac{4π}{3}$)+2cos2x,
(Ⅰ)求f(x)的最大值,并寫出使f(x)取最大值時(shí)x的集合;
(Ⅱ)已知△ABC中,角A、B、C的對(duì)邊分別為a、b、c,若f(B+C)=$\frac{3}{2}$,a=1,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.直線2x+4y-3=0的斜率為( 。
A.2B.-2C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)數(shù)列{an}和{bn}滿足:a1=$\frac{2}{3},3{a_{n+1}}=2{a_n}$(n∈N*),b1+$\frac{b_2}{2}+\frac{b_3}{3}+…+\frac{b_n}{n}={a_{n+1}}-\frac{2}{3}$(n∈N*
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)當(dāng)n∈N*時(shí),不等式b1+b2+b3+…+bn+λbn+1+2≤0恒成立,試求常數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=$\frac{sinx}{sinx+cosx}$在區(qū)間[0,$\frac{π}{2}$]上的最大值與最小值分別是 ( 。
A.1,0B.$\frac{1}{2}$,0C.0,-1D.1,$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=2,an+1=2Sn+2.
(1)求a2
(2)數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)bn=$\frac{{a}_{n+1}}{{S}_{n+1}{S}_{n}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案