16.設(shè)數(shù)列{an}和{bn}滿足:a1=$\frac{2}{3},3{a_{n+1}}=2{a_n}$(n∈N*),b1+$\frac{b_2}{2}+\frac{b_3}{3}+…+\frac{b_n}{n}={a_{n+1}}-\frac{2}{3}$(n∈N*
(1)求數(shù)列{an}和{bn}的通項公式;
(2)當n∈N*時,不等式b1+b2+b3+…+bn+λbn+1+2≤0恒成立,試求常數(shù)λ的取值范圍.

分析 (1)利用等比數(shù)列的通項公式可得an,利用遞推關(guān)系可得bn
(2)利用“錯位相減法”、等比數(shù)列的前n項和公式可得b1+b2+b3+…+bn=Sn,再利用不等式的性質(zhì)即可得出.

解答 解:(1)∵${a_1}=\frac{2}{3},3{a_{n+1}}=2{a_n}$,
∴$\frac{{{a_{n+1}}}}{a_n}=\frac{2}{3}$,{an}為首項為$\frac{2}{3}$,公比為$\frac{2}{3}$的等比數(shù)列,
∴${a_n}=\frac{2}{3}•{(\frac{2}{3})^{n-1}}={(\frac{2}{3})^n}$
又∵${b_1}+\frac{b_2}{2}+\frac{b_3}{3}+…+\frac{b_n}{n}={a_{n+1}}-\frac{2}{3}$①
令$n=1,{b_1}={a_2}-\frac{2}{3}=-\frac{2}{9}$
令n≥2,${b_1}+\frac{b_2}{2}+\frac{b_3}{3}+…+\frac{{{b_{n-1}}}}{n-1}={a_n}-\frac{2}{3}$②
①-②得,$\frac{b_n}{n}={a_{n+1}}-{a_n}={(\frac{2}{3})^{n+1}}-{(\frac{2}{3})^n}$=$(-\frac{1}{3}){(\frac{2}{3})^n}$,
∴${b_n}=(-\frac{n}{3}){(\frac{2}{3})^n}$(n≥2),當n=1時,滿足此式.
∴${b_n}=(-\frac{n}{3}){(\frac{2}{3})^n}$(n∈N*)
(2)令b1+b2+b3+…+bn=Sn
${S_n}=({-\frac{1}{3}})({\frac{2}{3}})+({-\frac{2}{3}}){({\frac{2}{3}})^2}+({-1}){({\frac{2}{3}})^3}+({-\frac{4}{3}}){({\frac{2}{3}})^4}+…+(-\frac{n}{3}){(\frac{2}{3})^n}$,
$\frac{2}{3}{S_n}=({-\frac{1}{3}}){({\frac{2}{3}})^2}+({-\frac{2}{3}}){({\frac{2}{3}})^3}+({-1}){({\frac{2}{3}})^4}+({-\frac{4}{3}}){({\frac{2}{3}})^5}+…+(-\frac{n}{3}){(\frac{2}{3})^n}^{+1}$,
相減得:$\frac{1}{3}{S_n}=-\frac{2}{9}-\frac{1}{3}({({\frac{2}{3}})^2}+{({\frac{2}{3}})^3}+{({\frac{2}{3}})^4}+{({\frac{2}{3}})^5}+…+{(\frac{2}{3})^n})+(\frac{n}{3}){(\frac{2}{3})^n}^{+1}$
=$-\frac{1}{3}(\frac{2}{3}+{({\frac{2}{3}})^2}+{({\frac{2}{3}})^3}+{({\frac{2}{3}})^4}+{({\frac{2}{3}})^5}+…+{(\frac{2}{3})^n})+(\frac{n}{3}){(\frac{2}{3})^n}^{+1}$
=$(-\frac{1}{3})\frac{{\frac{2}{3}(1-{{\frac{2}{3}}^n})}}{{1-\frac{2}{3}}}+(\frac{n}{3}){(\frac{2}{3})^n}^{+1}$
=$-\frac{2}{3}+{(\frac{2}{3})^n}^{+1}+(\frac{n}{3}){(\frac{2}{3})^n}^{+1}$=$-\frac{2}{3}+(\frac{n}{3}+1){(\frac{2}{3})^n}^{+1}$,
∴${S_n}=-2+(n+3){(\frac{2}{3})^n}^{+1}$,
∴Sn+λbn+1+2≤0,化簡得,${(\frac{2}{3})^n}^{+1}[{(n+3)-(\frac{n+1}{3})λ}]≤0$,
即$λ≥\frac{3(n+3)}{n+1}=3+\frac{6}{n+1}$,
∵n∈N*,∴$λ≥3+\frac{6}{1+1}=6$,
∴常數(shù)λ的取值范圍為λ≥6.

點評 本題考查了遞推關(guān)系的應(yīng)用、等比數(shù)列的通項公式及其前n項和公式、“錯位相減法”、不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

6.已知直線y=kx+2與拋物線C:x2=2py(p>0)交于A,B兩點,若當k=1時,$|AB|=4\sqrt{6}$.
(1)求拋物線C的方程;
(2)過A,B兩點分別作拋物線C的切線,若兩條切線交于點M,求點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.由表知f(x)=g(x)有實數(shù)解的區(qū)間是( 。
x-10123
f(x)-0.6773.0115.4325.9807.651
g(x)-0.5303.4514.8905.2416.892
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知集合A={x|-1<x<5},B={x|-2≤x<0}求A∪B={x|-2≤x<5}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知m,n為直線,α為平面,下列結(jié)論正確的是( 。
A.若m⊥n,n?α,則m⊥αB.若m∥α,m⊥n,則n⊥αC.若m∥α,n∥α,則m∥nD.若m⊥α,n⊥α,則m∥n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.設(shè)地球半徑為R,在緯度為α弧度的緯線圈上有A,B兩地,若這兩地的緯線圈上的弧長為πRcosα,則A,B兩地之間的球面距離為(π-2α)R.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.等差數(shù)列{an}中,a2=4,a4+a7=15.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求b1+b2+b3+…+b10的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.與雙曲線$\frac{{x}^{2}}{3}$-y2=1共焦點且過點(2,1)的橢圓的標準方程為$\frac{{x}^{2}}{\frac{9+17}{2}}+\frac{{y}^{2}}{\frac{1+\sqrt{17}}{2}}=1$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知集合A到B的映射f:(xy)→(x+y,xy),那么集合A中元素(4,3)在B中所對應(yīng)的元素是( 。
A.(1,3)B.(3,1)C.(7,12)D.(12,7)

查看答案和解析>>

同步練習冊答案