分析 由題意可得x-y>0,運(yùn)用配方結(jié)合條件化簡所求代數(shù)式為(x-y)+$\frac{4}{x-y}$,又基本不等式,以及等號(hào)成立的條件可得最小值和相應(yīng)的x,y的值.
解答 解:x>y>0,即為x-y>0,
由xy=3,
$\frac{{x}^{2}+{y}^{2}-2}{x-y}$=$\frac{(x-y)^{2}+2xy-2}{x-y}$=$\frac{(x-y)^{2}+4}{x-y}$
=(x-y)+$\frac{4}{x-y}$≥2$\sqrt{(x-y)•\frac{4}{x-y}}$=4.
當(dāng)且僅當(dāng)x-y=$\frac{4}{x-y}$,即x-y=2,
又xy=3,即為x=3,y=1取得等號(hào).
則有$\frac{{x}^{2}+{y}^{2}-2}{x-y}$的最小值為4,
相應(yīng)的x=3,y=1.
點(diǎn)評(píng) 本題考查基本不等式的運(yùn)用:求最值,注意等號(hào)成立的條件,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (0,1] | C. | (1,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$或$\frac{3}{4}$ | B. | $\frac{3}{4}$ | C. | $\frac{4}{5}$ | D. | $\frac{{\sqrt{5}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7200 | B. | 3600 | C. | 2400 | D. | 1200 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com